On a Vlasov-Fokker-Planck equation for ...
Document type :
Pré-publication ou Document de travail
Title :
On a Vlasov-Fokker-Planck equation for stored electron beams
Author(s) :
Cesbron, Ludovic [Auteur]
Analyse, Géométrie et Modélisation [AGM - UMR 8088]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Analyse, Géométrie et Modélisation [AGM - UMR 8088]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
English keyword(s) :
Vlasov-Fokker-Planck
Hypocoercivity
Hypoellipticity
Synchrotron radiation
Wakefield
Haissinski solutions
Hypocoercivity
Hypoellipticity
Synchrotron radiation
Wakefield
Haissinski solutions
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
In this paper we study a self-consistent Vlasov-Fokker-Planck equations which describes the longitudinal dynamics of an electron bunch in the storage ring of a synchrotron particle accelerator. We show existence and ...
Show more >In this paper we study a self-consistent Vlasov-Fokker-Planck equations which describes the longitudinal dynamics of an electron bunch in the storage ring of a synchrotron particle accelerator. We show existence and uniqueness of global classical solutions under physical hypotheses on the initial data. The proof relies on a mild formulation of the equation and hypoelliptic regularization estimates. We also address the problem of the long-time behavior of solutions. We prove the existence of steady states, called Haissinski solutions, given implicitly by a nonlinear integral equation. When the beam current (i.e. the nonlinearity) is small enough, we show uniqueness of steady state and local asymptotic nonlinear stability of solutions in appropriate weighted Lebesgue spaces. The proof is based on hypocoercivity estimates. Finally, we discuss the physical derivation of the equation and its particular asymmetric interaction potential.Show less >
Show more >In this paper we study a self-consistent Vlasov-Fokker-Planck equations which describes the longitudinal dynamics of an electron bunch in the storage ring of a synchrotron particle accelerator. We show existence and uniqueness of global classical solutions under physical hypotheses on the initial data. The proof relies on a mild formulation of the equation and hypoelliptic regularization estimates. We also address the problem of the long-time behavior of solutions. We prove the existence of steady states, called Haissinski solutions, given implicitly by a nonlinear integral equation. When the beam current (i.e. the nonlinearity) is small enough, we show uniqueness of steady state and local asymptotic nonlinear stability of solutions in appropriate weighted Lebesgue spaces. The proof is based on hypocoercivity estimates. Finally, we discuss the physical derivation of the equation and its particular asymmetric interaction potential.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document