String topology of classifying spaces
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
String topology of classifying spaces
Author(s) :
Chataur, David [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Menichi, Luc [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Menichi, Luc [Auteur]
Laboratoire Angevin de Recherche en Mathématiques [LAREMA]
Journal title :
Journal für die reine und angewandte Mathematik
Pages :
1 - 45
Publisher :
Walter de Gruyter
Publication date :
2012
ISSN :
0075-4102
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
<p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose ...
Show more ><p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose of this paper is to study the singular homology H*(ℒBG) of this loop space. We prove that when taken with coefficients in a field the homology of ℒBG is a homological conformal field theory. As a byproduct of our Main Theorem, we get a Batalin–Vilkovisky algebra structure on the cohomology H*(ℒBG). We also prove an algebraic version of this result by showing that the Hochschild cohomology HH*(S*(G), S*(G)) of the singular chains of G is a Batalin–Vilkovisky algebra.Comments (0)</p>Show less >
Show more ><p>Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let ℒBG ≔ map(S1, BG) be the free loop space of BG, i.e. the space of continuous maps from the circle S1 to BG. The purpose of this paper is to study the singular homology H*(ℒBG) of this loop space. We prove that when taken with coefficients in a field the homology of ℒBG is a homological conformal field theory. As a byproduct of our Main Theorem, we get a Batalin–Vilkovisky algebra structure on the cohomology H*(ℒBG). We also prove an algebraic version of this result by showing that the Hochschild cohomology HH*(S*(G), S*(G)) of the singular chains of G is a Batalin–Vilkovisky algebra.Comments (0)</p>Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 0801.0174
- Open access
- Access the document