Some elementary explicit bounds for two ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Some elementary explicit bounds for two mollifications of the Moebius function
Author(s) :
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Functiones et Approximatio Commentarii Mathematici
Pages :
229-240
Publisher :
Poznań : Wydawnictwo Naukowe Uniwersytet im. Adama Mickiewicza
Publication date :
2013-12
ISSN :
0208-6573
HAL domain(s) :
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
We prove that the $\sum_{d\le x, (d,r)=1}\mu(d)/d^{1+\varepsilon}$ is bounded by $1 + \varepsilon$, uniformly in $x \ge 1$, $r$ and $\varepsilon > 0$. We prove a similar estimate for the quantity $\sum_{d\le x, (d,r)=1} ...
Show more >We prove that the $\sum_{d\le x, (d,r)=1}\mu(d)/d^{1+\varepsilon}$ is bounded by $1 + \varepsilon$, uniformly in $x \ge 1$, $r$ and $\varepsilon > 0$. We prove a similar estimate for the quantity $\sum_{d\le x, (d,r)=1} \mu(d) \log(x/d)/d^{1+\varepsilon}. When $\varepsilon=0$, $r$ r varies between 1 and a hundred, and x is below a million, this sum is non-negative and this raises the question as to whether it is non-negative for every x.Show less >
Show more >We prove that the $\sum_{d\le x, (d,r)=1}\mu(d)/d^{1+\varepsilon}$ is bounded by $1 + \varepsilon$, uniformly in $x \ge 1$, $r$ and $\varepsilon > 0$. We prove a similar estimate for the quantity $\sum_{d\le x, (d,r)=1} \mu(d) \log(x/d)/d^{1+\varepsilon}. When $\varepsilon=0$, $r$ r varies between 1 and a hundred, and x is below a million, this sum is non-negative and this raises the question as to whether it is non-negative for every x.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- MuLog-4.pdf
- Open access
- Access the document
- MuLog-4%20%281%29.pdf
- Open access
- Access the document