$L^\infty$ bounds for numerical solutions ...
Document type :
Communication dans un congrès avec actes
Title :
$L^\infty$ bounds for numerical solutions of noncoercive convection-diffusion equations
Author(s) :
Chainais-Hillairet, Claire [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Conference title :
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples.
City :
Bergen
Country :
Norvège
Start date of the conference :
2020-06-15
Journal title :
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020.
English keyword(s) :
finite volume schemes
uniform bounds
noncoercive elliptic equations
uniform bounds
noncoercive elliptic equations
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this work, we apply an iterative energy method à la de Giorgi in order to establish $L^\infty$ bounds for numerical solutions of noncoercive convection-diffusion equations with mixed Dirichlet-Neumann boundary conditions.In this work, we apply an iterative energy method à la de Giorgi in order to establish $L^\infty$ bounds for numerical solutions of noncoercive convection-diffusion equations with mixed Dirichlet-Neumann boundary conditions.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- chainais_herda_FVCA9.pdf
- Open access
- Access the document
- 1912.05366
- Open access
- Access the document