Behavior with respect to the Hurst index ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Behavior with respect to the Hurst index of the Wiener Hermite integrals and application to SPDEs
Author(s) :
Slaoui, Meryem [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Mathematical Analysis and Applications
Publisher :
Elsevier
Publication date :
2019-06
ISSN :
0022-247X
English keyword(s) :
Wiener chaos
Hermite process
stochastic heat equa- tion
fractional Brownian motion
multiple stochastic integrals
Malliavin calculus
Fourth Moment Theorem
multiparameter stochastic processes
Hermite process
stochastic heat equa- tion
fractional Brownian motion
multiple stochastic integrals
Malliavin calculus
Fourth Moment Theorem
multiparameter stochastic processes
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
We consider the Wiener integral with respect to a d-parameter Hermite process with Hurst multi-index H = (H 1 , .., H d) ∈ 1 2 , 1 d and we analyze the limit behavior in distribution of this object when the components of ...
Show more >We consider the Wiener integral with respect to a d-parameter Hermite process with Hurst multi-index H = (H 1 , .., H d) ∈ 1 2 , 1 d and we analyze the limit behavior in distribution of this object when the components of H tend to 1 and/or 1 2. As examples, we focus on the solution to the stochastic heat equation with additive Hermite noise and to the Hermite Ornstein-Uhlenbeck process. 2010 AMS Classification Numbers: 60H05, 60H15, 60G22.Show less >
Show more >We consider the Wiener integral with respect to a d-parameter Hermite process with Hurst multi-index H = (H 1 , .., H d) ∈ 1 2 , 1 d and we analyze the limit behavior in distribution of this object when the components of H tend to 1 and/or 1 2. As examples, we focus on the solution to the stochastic heat equation with additive Hermite noise and to the Hermite Ornstein-Uhlenbeck process. 2010 AMS Classification Numbers: 60H05, 60H15, 60G22.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- H-heat-JMAA.pdf
- Open access
- Access the document
- 1907.05633
- Open access
- Access the document