An extremal composition operator on the ...
Document type :
Pré-publication ou Document de travail
Title :
An extremal composition operator on the Hardy space of the bidisk with small approximation numbers
Author(s) :
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
English keyword(s) :
approximation numbers
Key-words approximation numbers
bidisk
composition operator
cusp map
distinguished boundary
Hardy space
Key-words approximation numbers
bidisk
composition operator
cusp map
distinguished boundary
Hardy space
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are ...
Show more >We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are small in the sense that $\limsup_{n \to \infty} [a_{n^2} (C_\Phi)]^{1 / n} < 1$.Show less >
Show more >We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are small in the sense that $\limsup_{n \to \infty} [a_{n^2} (C_\Phi)]^{1 / n} < 1$.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- Distinguished%20boundary.pdf
- Open access
- Access the document
- 1901.07245
- Open access
- Access the document