Non-existence for travelling waves with ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Non-existence for travelling waves with small energy for the Gross–Pitaevskii equation in dimension $N\geq 3$
Author(s) :
De Laire, André [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Comptes Rendus. Mathématique
Pages :
375-380
Publisher :
Académie des sciences (Paris)
Publication date :
2009-04
ISSN :
1631-073X
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We prove that the Ginzburg–Landau energy of non-constant travelling waves of the Gross–Pitaevskii equation has a lower positive bound, depending only on the dimension, in any dimension larger or equal to three. In particular, ...
Show more >We prove that the Ginzburg–Landau energy of non-constant travelling waves of the Gross–Pitaevskii equation has a lower positive bound, depending only on the dimension, in any dimension larger or equal to three. In particular, we conclude that there are no non-constant travelling waves with small energy. To cite this article: A. de Laire, C. R. Acad. Sci. Paris, Ser. I 347 (2009).Show less >
Show more >We prove that the Ginzburg–Landau energy of non-constant travelling waves of the Gross–Pitaevskii equation has a lower positive bound, depending only on the dimension, in any dimension larger or equal to three. In particular, we conclude that there are no non-constant travelling waves with small energy. To cite this article: A. de Laire, C. R. Acad. Sci. Paris, Ser. I 347 (2009).Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- compte-rendu-preprint.pdf
- Open access
- Access the document