High energy rotation type solutions of the ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
High energy rotation type solutions of the forced pendulum equation
Author(s) :
Felmer, Patricio [Auteur]
Center for Mathematical Modeling [CMM]
De Laire, André [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martinez, Salome [Auteur]
Centre de modélisation mathématique / Centro de Modelamiento Matemático [Santiago] [CMM]
Tanaka, Kazunaga [Auteur]
Waseda University [Tokyo, Japan]
Center for Mathematical Modeling [CMM]
De Laire, André [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Martinez, Salome [Auteur]
Centre de modélisation mathématique / Centro de Modelamiento Matemático [Santiago] [CMM]
Tanaka, Kazunaga [Auteur]
Waseda University [Tokyo, Japan]
Journal title :
NONLINEARITY
Pages :
1473-1499
Publisher :
IOP Publishing
Publication date :
2013-05-01
ISSN :
0951-7715
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
In this article we study the existence and asymptotic profiles of high-energy rotation type solutions of the singularly perturbed forced pendulum equation We prove that the asymptotic profile of these solutions is described ...
Show more >In this article we study the existence and asymptotic profiles of high-energy rotation type solutions of the singularly perturbed forced pendulum equation We prove that the asymptotic profile of these solutions is described in terms of an energy function which satisfy an integro-differential equation. Also we show that given a suitable energy function E satisfying the integro-differential equation, a family of solutions of the pendulum equation above exists having E as the asymptotic profile, when $\epsilon \rightarrow 0$.Show less >
Show more >In this article we study the existence and asymptotic profiles of high-energy rotation type solutions of the singularly perturbed forced pendulum equation We prove that the asymptotic profile of these solutions is described in terms of an energy function which satisfy an integro-differential equation. Also we show that given a suitable energy function E satisfying the integro-differential equation, a family of solutions of the pendulum equation above exists having E as the asymptotic profile, when $\epsilon \rightarrow 0$.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :