Finite dimensional global attractor for a ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Finite dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation
Author(s) :
Calgaro, Caterina [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Goubet, Olivier [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Zahrouni, Ezzeddine [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Goubet, Olivier [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Zahrouni, Ezzeddine [Auteur]
Journal title :
Mathematical Methods in the Applied Sciences
Publisher :
Wiley
Publication date :
2017
ISSN :
0170-4214
English keyword(s) :
fractal dimension
Nonlinear Schrödinger equations
Crank-Nicolson scheme
global attractor
Nonlinear Schrödinger equations
Crank-Nicolson scheme
global attractor
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]
Mathématiques [math]
English abstract : [en]
We consider a semi-discrete in time Crank-Nicolson scheme to discretise a weakly damped forced nonlinear fractional Schrödinger equation u t − i(−∆) α u + i|u| 2 u + γu = f for α ∈ (1 2 , 1) considered in the the whole ...
Show more >We consider a semi-discrete in time Crank-Nicolson scheme to discretise a weakly damped forced nonlinear fractional Schrödinger equation u t − i(−∆) α u + i|u| 2 u + γu = f for α ∈ (1 2 , 1) considered in the the whole space R. We prove that such semi-discrete equation provides a discrete infinite dimensional dynamical in H α (R) that possesses a global attractor in H α (R). We show also that if the external force is in a suitable weighted Lebesgue space then this global attractor has a finite fractal dimension.Show less >
Show more >We consider a semi-discrete in time Crank-Nicolson scheme to discretise a weakly damped forced nonlinear fractional Schrödinger equation u t − i(−∆) α u + i|u| 2 u + γu = f for α ∈ (1 2 , 1) considered in the the whole space R. We prove that such semi-discrete equation provides a discrete infinite dimensional dynamical in H α (R) that possesses a global attractor in H α (R). We show also that if the external force is in a suitable weighted Lebesgue space then this global attractor has a finite fractal dimension.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- CGZ16juillet2016.pdf
- Open access
- Access the document
- CGZ16juillet2016.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- CGZ16juillet2016.pdf
- Open access
- Access the document