Qualitative properties of solutions to ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Qualitative properties of solutions to mixed-diffusion bistable equations
Author(s) :
Bonheure, Denis [Auteur]
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Juraj, Földes [Auteur]
Département de mathématiques Université Libre de Bruxelles
Alberto, Saldaña [Auteur]
Département de mathématiques Université Libre de Bruxelles
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Juraj, Földes [Auteur]
Département de mathématiques Université Libre de Bruxelles
Alberto, Saldaña [Auteur]
Département de mathématiques Université Libre de Bruxelles
Journal title :
Calculus of Variations and Partial Differential Equations
Publisher :
Springer Verlag
Publication date :
2016-05
ISSN :
0944-2669
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We consider a fourth-order extension of the Allen-Cahn model with mixed-diffusion and Navier boundary conditions. Using variational and bifurcation methods, we prove results on existence, uniqueness, positivity, stability, ...
Show more >We consider a fourth-order extension of the Allen-Cahn model with mixed-diffusion and Navier boundary conditions. Using variational and bifurcation methods, we prove results on existence, uniqueness, positivity, stability, a priori estimates, and symmetry of solutions. As an application, we construct a nontrivial bounded saddle solution in the plane.Show less >
Show more >We consider a fourth-order extension of the Allen-Cahn model with mixed-diffusion and Navier boundary conditions. Using variational and bifurcation methods, we prove results on existence, uniqueness, positivity, stability, a priori estimates, and symmetry of solutions. As an application, we construct a nontrivial bounded saddle solution in the plane.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Bistable_submitted.pdf
- Open access
- Access the document
- 1509.07468
- Open access
- Access the document
- document
- Open access
- Access the document
- Bistable_submitted.pdf
- Open access
- Access the document