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Abstract

The present research focuses on combined modeling and experimental work on the com-
bustion of oxymethylene ethers (OMEs). OMEs are promising synthetic fuels which can be
produced in a carbon-neutral manner starting from captured CO2 and renewable energy.
Moreover, blending them with conventional diesel reduces soot emissions because of the ab-
sence of carbon-carbon bonds. This results in less harmful emissions and contributes to a
more sustainable transport sector as aimed by the Paris climate agreement objectives. To
promote the use of these kind of molecules as fuel additive, it is important to understand their
low- and high-temperature combustion kinetics. The development of detailed microkinetic
models provides this fundamental insight and enables predictive simulations for combustion
applications.
During the last decade, great progress has been made in the construction of reliable kinetic
models for numerous technologically important radical chemistry processes. The resulting
models typically contain hundreds of species, and several thousands of associated reactions.
The manual generation of microkinetic models would be a tedious, error prone and often
incomplete process. To prevent this, automatic kinetic model generation routines have been
developed to systematically develop models, such as Genesys at the Laboratory for Chemi-
cal Technology (Ghent University) [1]. A kinetic model for both oxidation and pyrolysis has
been developed for OME3 based on first principles using Genesys.

A prerequisite for the generation of detailed kinetic models is the availability of accurate
thermodynamic and kinetic data for species and reactions respectively. Ideally, these pa-
rameters are available from experiments or high-level quantum chemical calculations. Since
these methods are expensive and time-consuming, Genesys instead often relies on approxi-
mation methods such as group additivity and rate rules. In this work, thermodynamic and
kinetic parameters are obtained from quantum chemical calculations at the CBS-QB3 level
of theory for important reaction pathways for both low- and high- temperature oxidation of
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OME3. The results of these calculations are extrapolated to be valid for long-chain OMEs
by regression of new group additive values and rate rules.

Within Genesys, the possible reactions are generally defined in terms of reaction families,
e.g. hydrogen abstraction by molecular oxygen from a secondary carbon atom. Reaction
families from earlier studies on smaller oxymethylene ethers such as dimethoxy methane [2]
are taken over and applied for the OME3 model. The outcome is a model containing the
chemistry for OME3. To include the chemistry of smaller (oxygenated) hydrocarbons in the
final model, the Genesys model is merged with the AramcoMech 1.3 base model [3].

Both flat flame burner and rapid compression machine experiments have been performed
with OME3 for validation of the combustion model. The flame experiments are performed
at 0.053 bara and with a fuel composition of 20 mol% OME3 and 80 mol% CH4. Some mea-
sured concentration profiles in function of the height above burner (HAB) of small species
(i.e. OME3, CH2O, CH3OH, H2, CO2 and CO) are shown in Figure 1. Other impor-
tant species which are observed include ethane, ethylene, dimethyl ether, methyl formate,
dimethoxy methane and methoxymethyl formate.

Ignition delay times have been measured via rapid compression at 5 bara for and to ad-
ditionally validate the low-temperature section of the model. Samples were taken to identify
the reactants and products, including OME3, methyl formate, methoxymethyl formate and
methoxymethoxymethyl formate. Similarly, pyrolysis experiments are performed for OME3
in a bench-scale steam cracker setup over a broad range of temperatures (723 K – 1073 K)
to validate both the primary and secondary chemistry of the pyrolysis model.
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