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Abstract 26 

Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) and 27 

N-methyl-pyrrolidone (NMP) were prepared for controlled ocular delivery of dexamethasone. 28 

The impact of the volume of the release medium, initial drug content, polymer molecular weight 29 

and PLGA concentration on the resulting drug release kinetics were studied and explained 30 

based on a thorough physico-chemical characterization of the systems. This included for 31 

instance the monitoring of dynamic changes in the implants’ wet and dry mass, morphology, 32 

PLGA polymer molecular weight, pH of the surrounding bulk fluid and water/NMP contents 33 

upon exposure to phosphate buffer pH 7.4. Importantly, the systems can be expected to be rather 34 

robust with respect to variations in the vitreous humor volumes encountered in vivo. 35 

Interestingly, limited drug solubility effects within the implants as well as in the surrounding 36 

aqueous medium play an important role for the control of drug release at a drug loading of only 37 

7.5 %. Furthermore, the polymer molecular weight and PLGA concentration in the liquid 38 

formulations are decisive for how the polymer precipitates during solvent exchange and for the 39 

swelling behavior of the systems. These features determine the resulting inner system structure 40 

and the conditions for mass transport. Consequently, they affect the degradation and drug 41 

release of the in-situ formed implants. 42 

 43 

Key words: PLGA; in-situ forming implant; dexamethasone; autocatalysis; swelling  44 
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1. Introduction 45 

Age-related macular degeneration (AMD) and diabetic retinopathy are two of the leading 46 

causes for irreversible blindness and vision impairment (Hughes et al., 2005; Edelhauser et al., 47 

2010). Late AMD exists in two forms: the atrophic (or “dry”) AMD and the neovascular (or 48 

“wet”) AMD. Yet, up to now, wet AMD is the only treatable form. It is triggered by vascular 49 

endothelial growth factor (VEGF), causing the blood vessels in the retina to grow erratically, 50 

eventually breaking through the Bruch’s membrane (the innermost layer of the choroid). This 51 

leads to blood and protein leakage in the macula, resulting in a blurry vision or sudden vision 52 

loss (Chiou, 2011; Bonilha et al., 2013). In the case of diabetic retinopathy, microvascular 53 

complications are the result of poorly adjusted diabetes. Sustained hyperglycaemia ultimately 54 

causes microaneurysms and a breakdown of endothelial tight junctions in the blood-retinal 55 

barrier (BRB), allowing proteins to leak into the vitreous. At later stages, choroidal 56 

neovascularization of the retina occurs (Kowluru and Mishra, 2015; Wan et al., 2015; Zaki et 57 

al., 2016). Both diseases (wet AMD and diabetic retinopathy) are commonly treated by 58 

intravitreal injections of anti-VEGF agents and corticosteroids. Anti-VEGF agents inhibit the 59 

growth of the blood vessels, while corticosteroids reduce inflammation by minimizing the 60 

expression of inflammatory cytokines and of VEGF. Hence, the choroidal neovascularization 61 

is stabilized, decreasing the breakdown rate of the blood-retinal barrier (Kurz et al., 2008; 62 

Wykoff et al., 2015; Rodríguez Villanueva et al., 2017).  63 

For an effective treatment, the drugs have to reach the retina in the back of the eye. 64 

However, the anatomy and physiology of the eye hamper this: For instance, when using eye 65 

drops, less than 5% of the administered drug is generally absorbed through the cornea to reach 66 

the anterior chamber (Urtti, 2006). This is due to the low permeability of the cornea (with its 67 

different layers and polarities), dilution with tear fluid, rapid lacrimal drainage and other factors. 68 

Most importantly, only a very small fraction of the drug is finally found inside the vitreous: the 69 
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site of action (approximately 0.001 – 0.0004 % of the administered drug) (Urtti, 2006; Wilson 70 

et al., 2011; Kaur and Kakkar, 2014). It has to be pointed out that systemic drug administration 71 

also encounters a crucial hurdle: The blood-retinal barrier, preventing most drugs from reaching 72 

the vitreous. The attempt to overcome this hurdle with very high systemically administered 73 

drug amounts to achieve therapeutic levels in the eye is limited by severe side effects 74 

(Edelhauser et al., 2010; Kaur and Kakkar, 2014). 75 

For these reasons intravitreal drug injections are currently considered as the most 76 

appropriate way to assure that the drug reaches its site of action. However, every injection bears 77 

a risk of infections and other serious side effects, like retinal detachment, retinal haemorrhage, 78 

endophthalmitis, increased intraocular pressure, cataract or vitreous haemorrhage (Edelhauser 79 

et al., 2010; Giudice and Galan, 2012; Ying et al., 2013; Kaur and Kakkar, 2014; Bisht et al., 80 

2017). Apart from these risks, the discomfort of receiving a needle in the eye leads to limited 81 

compliance (Droege et al., 2013; Ghazala et al., 2013).  82 

To assure treatment efficacy, therapeutic drug concentrations must be provided over 83 

prolonged periods of time at the site of action. Since dexamethasone has a half-life of 84 

approximately 5.5 h in the vitreous, frequent injections are, thus, necessary to remain within 85 

the therapeutic range (Chan et al., 2011). Local controlled drug delivery systems can help 86 

overcoming all these hurdles: The risk of side effects can be reduced, patient compliance 87 

improved and the therapeutic efficacy increased. Nowadays, non-biodegradable implants are 88 

approved by the FDA for intraocular administration, releasing dexamethasone over prolonged 89 

periods of time [e.g., Retisert (retisert.com), Iluvien (iluvien.com)]. However, these implants 90 

have to be removed surgically upon drug exhaust, which is associated with similar risks as the 91 

initial insertion, or remain in the vitreous where they accumulate over time (Yasin et al., 2014). 92 

To avoid the second surgery for device removal, biodegradable implants offer an interesting 93 

potential. For example, Allergan developed Ozurdex, a biodegradable implant containing 0.7 94 
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mg dexamethasone in a poly(lactic-co-glycolic acid) (PLGA) matrix, which is injected through 95 

a 22G needle (Chan et al., 2011). But large needles can be problematic in practice. The injection 96 

of a liquid solution, that precipitates in-situ in the eye and sustains drug release, could 97 

effectively reduce the required needle size. Importantly, smaller needles are associated with 98 

less pain experienced by the patients (Rodrigues et al., 2011). 99 

Different types of in-situ forming implants have been described in the literature, for various 100 

types of applications (Kranz and Bodmeier, 2007, 2008; Schoenhammer et al., 2009, 2010; 101 

Kempe and Mäder, 2012; Parent et al., 2013, 2017). The transformation from the liquid state 102 

(allowing for facilitated administration) to the solid state (allowing for controlled drug release 103 

over prolonged periods of time) can be induced by different phenomena, such as solvent 104 

exchange, changes in the pH or temperature, or in-situ cross-linking (Kempe and Mäder, 2012). 105 

In the case of solvent exchange, generally a water-insoluble polymeric matrix former is 106 

dissolved in a biocompatible, water-miscible organic solvent. The drug is dissolved and/or 107 

dispersed in this polymer solution. Upon injection into aqueous body fluids, the organic solvent 108 

diffuses into the surrounding environment (being miscible with water), while water diffuses 109 

into the formulation. Since the polymer is water-insoluble, it precipitates and forms the solid 110 

implant. The drug molecules or particles are trapped within the implant and slowly released 111 

over time. Different formulation parameters can be used to alter implant formation and 112 

performance. For instance, the addition of hydrophilic polymers [such as hydroxypropyl 113 

methylcellulose (HPMC)] has been proposed to increase the bioadhesion of in-situ forming 114 

implants releasing antimicrobial drugs in periodontal pockets for the treatment of periodontitis 115 

(Do et al., 2014, 2015b, 2015a; Agossa et al., 2017). Poly(lactic-co-glycolic acid) (PLGA) is a 116 

well-known biodegradable and biocompatible matrix former in parenteral controlled release 117 

formulations (Kranz et al., 2000; Luan et al., 2006; Desai et al., 2008; Kempe et al., 2010; 118 

Fredenberg et al., 2011; Ghalanbor et al., 2013; Schwendeman et al., 2014; Gasmi et al., 2015a, 119 
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2015b; Huang et al., 2015; Gasmi et al., 2016; Hirota et al., 2016; Hamoudi-Ben Yelles et al., 120 

2017). In the case of in-situ forming implants based on PLGA, often N-methyl-pyrrolidone 121 

(NMP) is used as a water-miscible organic solvent, for example in the following commercially 122 

available drug products: Atridox (for injection into periodontal pockets) (Thakur et al., 2014); 123 

Eligard (for subcutaneous injection) (eligard.com); Nuflor (for intramuscular or subcutaneous 124 

injection in beef) (merck-animal-health-usa.com/product/cattle/Nuflor-Injectable-Solution/1); 125 

Doxirobe gel (for injection into periodontal pockets in dogs) 126 

(zoetisus.com/products/dogs/doxirobe-gel.aspx). Furthermore, the group of AG Mikos (Ueda 127 

et al., 2007) reported on NMP-based in-situ forming ocular drug delivery systems for 128 

luocinolone acetonide, which are based on poly(propylene fumarate) as polymeric matrix 129 

former. It has to be pointed out that the toxicity of NMP upon intraocular injection should be 130 

investigated in the future. 131 

The aim of this study was to prepare different types of in-situ forming implants based on 132 

PLGA for intraocular dexamethasone delivery. The systems were thoroughly characterized 133 

physico-chemically, including for instance dynamic changes in the wet mass, dry mass, 134 

water/NMP content, morphology, polymer molecular weight, potential changes in the pH of the 135 

release medium, and drug release kinetics. 136 

 137 

 138 

2. Materials and methods 139 

 140 

2.1. Materials 141 

Poly(D,L-lactic-co-glycolic acid) (50:50, -COOH end groups; PLGA, Resomer RG 502 H 142 

and Resomer RG 504 H; Evonik, Darmstadt, Germany); dexamethasone (Discovery Fine 143 

Chemicals, Dorset, UK); N-methyl-pyrrolidone, acetonitrile and tetrahydrofuran (Fisher 144 

Scientific, Illkirch, France); ethanol 96% (VWR, Fontenay-sous-Bois, France). 145 
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 146 

2.2. Preparation of the liquid formulations 147 

Appropriate amounts of PLGA and dexamethasone were dissolved in NMP in glass vials 148 

under stirring at 500 rpm (Multipoint Stirrer, Thermo Scientific, Loughborough, UK) at room 149 

temperature for 60 min. Afterwards, the vials were kept without stirring for 1 h at room 150 

temperature in order to remove air bubbles. The formulations were stored at 2-8 °C, and allowed 151 

to reach room temperature prior to use. 152 

 153 

2.3. In-situ formation of implants 154 

Eppendorf vials were filled with 2.25 or 4.5 mL phosphate buffer pH 7.4 (USP 40) and kept 155 

at 37 °C overnight. One hundred µl of the liquid PLGA/dexamethasone/NMP formulations 156 

(prepared as described in section 2.2.) were injected into the vials using a syringe pump 157 

(2 mL/min; PHD 2000; Harvard Apparatus, Holliston, USA). Solvent exchange initiated 158 

polymer precipitation and in-situ implant formation. The Eppendorf vials were placed into a 159 

horizontal shaker (80 rpm, 37 °C; GFL 3033, Gesellschaft fuer Labortechnik, Burgwedel, 160 

Germany). 161 

 162 

2.4. Characterization of in-situ formed implants 163 

In vitro drug release: At determined time points, the phosphate buffer pH 7.4 was 164 

completely renewed. The amount of dexamethasone in the withdrawn bulk fluid was 165 

determined by HPLC-UV analysis, using a Thermo Fisher Scientific Ultimate 3000 Series 166 

HPLC, equipped with a LPG 3400 SD/RS pump, an auto sampler (WPS-3000 SL) and a UV-167 

Vis detector (VWD-3400RS) (Thermo Fisher Scientific, Waltham, USA). Samples were 168 

centrifuged for 2.5 min at 10,000 rpm (Centrifuge Universal 320; Hettich, Tuttlingen, 169 

Germany), and filtered with a 0.45 µm PVDF syringe filter (Millex-HV, Merck Millipore, 170 
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Tullagreen, Ireland). Fifty µL samples were injected into an A C18 RP column (Gemini 3 µm 171 

C18 110 Å, 100 mm x 4.6 mm; Phenomenex, Le Pecq, France). The mobile phase consisted of 172 

acetonitrile and water (33:67 v/v), the flow rate was 1.5 mL/min. Dexamethasone had a 173 

retention time of approximately 3.8 min, the detection wavelength was λ = 254 nm. The 174 

calibration curve was linear (R > 0.999) within the range of 0.06 to 0.00003 mg/mL. To 175 

determine the amount of dexamethasone potentially remaining in the implants after 35 d 176 

exposure to phosphate buffer pH 7.4, the remnants were freeze-dried for 3 d (Christ Epsilon 2–177 

4 LSC; Martin Christ, Osterode, Germany) and the lyophilisates were dissolved in a mixture of 178 

acetonitrile and ethanol (2:1 v/v). The solutions were filtered using 0.45 µm PVDF filter 179 

syringes, and analyzed for their drug contents by HPLC-UV (as described above). In case of 180 

incomplete drug release at the end of the observation period, the “missing” amounts were 181 

experimentally recovered in the implant remnants. All experiments were conducted in triplicate. 182 

In addition, the pH of the release medium was measured at pre-determined time points using a 183 

pH meter (InoLab pH Level 1; WTW, Weilheim, Germany) (n = 3). 184 

Implant swelling and erosion: At pre-determined time points, implant samples were 185 

withdrawn, excess water carefully removed using Kimtech precision wipes (Kimberly-Clark, 186 

Rouen, France) and weighed [wet mass (t)]. The samples were lyophilized for 3 d (Christ 187 

Epsilon 2–4 LSC) and weighed again [dry mass (t)]. The wet mass (%) (t), water/NMP content 188 

(%) (t), and dry mass loss (%) (t) were calculated as follows: 189 

 190 

𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (%)(𝑡) =  
𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑡)

𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
 × 100 %   (1) 191 

 192 

𝑤𝑎𝑡𝑒𝑟/𝑁𝑀𝑃 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%)(𝑡) =  
𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑡)−𝑑𝑟𝑦 𝑚𝑎𝑠𝑠(𝑡)

𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑡)
 × 100 %  (2) 193 

 194 

𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 (%)(𝑡) =  
𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 (0) −𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 (𝑡)

𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 (0)
 × 100 %  (3) 195 

 196 



9 
 

 
 

where formulation mass is the initial total mass of the liquid formulation (PLGA + 197 

dexamethasone + NMP), and dry mass (0) is the dry mass of the liquid formulation prior to 198 

exposure to the release medium (PLGA + dexamethasone). All experiments were conducted in 199 

triplicate. 200 

Polymer degradation: At pre-determined time points, implants were withdrawn, freeze-201 

dried and the lyophilisates were dissolved in tetrahydrofuran (at a concentration of 3 mg/mL). 202 

The average polymer molecular weight (Mw) of the PLGA was determined by Gel Permeation 203 

Chromatography (GPC, Separation Modules e2695 and e2695D, 2419 RI Detector, Empower 204 

GPC software; Waters, Guyancourt, France) using a PLGel 5 µm MIXED-D column, 7.5 x 205 

300 mm (Agilent Technologies, Interchim, Montluçon, France). The injection volume was 206 

50 µL. Tetrahydrofuran was the mobile phase (flow rate: 1 mL/min). Polystyrene standards 207 

with molecular weights between 1,090 and 70,950 Da (Polymer Labaratories, Varian, Les Ulis, 208 

France) were used to prepare the calibration curve. All experiments were conducted in 209 

triplicate.  210 

Implant morphology: At pre-determined time points, implants were withdrawn and 211 

optionally freeze-dried. Cross-sections were obtained by manual breaking. Pictures were taken 212 

with an optical image analysis system (Nikon SMZ-U; Nikon, Tokyo, Japan), equipped with a 213 

Zeiss camera (AxioCam ICc1; Zeiss, Jena, Germany). 214 

 215 

2.5. Determination of the drug solubility 216 

The solubility of dexamethasone (as received) in phosphate buffer pH 7.4 at 37 °C was 217 

determined in agitated glass flasks. An excess amount of dexamethasone powder 218 

(approximately 30 mg) was exposed to 80 mL bulk fluid, kept at 37 °C under horizontal shaking 219 

(80 rpm; GFL 3033). Samples were withdrawn, filtered (0.45 µm PVDF syringe filter), diluted 220 



10 
 

 
 

and analyzed for their drug content by HPLC-UV (as described above, using an injection 221 

volume of 20 µL) until equilibrium was reached. Each experiment was conducted in triplicate. 222 

 223 

 224 

3. Results and Discussion 225 

 226 

3.1. Importance of the volume of the release medium 227 

Since the investigated implants are formed in-situ following solvent exchange, it was 228 

important to evaluate the impact of the volume of the release medium into which the 229 

PLGA/drug/NMP solutions were injected. Potentially, the volume of this aqueous phase can 230 

affect the diffusion rate of NMP into the surrounding aqueous phase and/or the diffusion rate 231 

of water into the (initially) liquid formulation. Such changes might affect the resulting implant 232 

size and inner structure and, hence, the drug release kinetics. 233 

The volume of vitreous humor in humans has been reported to be about 4 to 5 mL (Bennett, 234 

2016). To monitor potential effects of variations in the bulk fluid volume in this order of 235 

magnitude on the key properties of the in-situ formed implants, 2.25 and 4.5 mL have been 236 

investigated in this study. Furthermore, most drugs are eliminated via the anterior pathway 237 

(Toris et al., 1999; Urtti, 2006). To simulate drug elimination and fluid renewal, the release 238 

medium was completely exchanged every day during the first week (which is most decisive for 239 

implant formation) in this study. 240 

Figure 1 shows macroscopic pictures of PLGA-based implants formed upon injection of 241 

100 µL of a PLGA/dexamethasone/NMP solution into 2.25 or 4.5 mL phosphate buffer pH 7.4 242 

(37 °C). The liquid formulations contained 30 % Resomer RG 502H and 0.75 % 243 

dexamethasone. The photos were taken after 3 d. At the top, implants in Eppendorf tubes (filled 244 

with the release medium) are shown. Below, higher magnifications of implants, which had been 245 
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carefully withdrawn from the release medium are illustrated (surfaces). At the bottom, surfaces 246 

and cross-sections of implant samples after freeze-drying are shown. The cross-sections were 247 

obtained by manual breaking. The dashed regions highlight the hollow cores of the implants. 248 

As it can be seen, there was no remarkable impact of the volume of the aqueous bulk fluid (2.25 249 

vs. 4.5 mL) on the resulting implant morphology: left vs. right hand side in Figure 1. Please 250 

note that caution must be paid when drawing conclusions from the pictures of lyophilized 251 

implants, because of artifact creation during freeze-drying. Importantly, the implants were 252 

hollow also in the wet state (data not shown). This can be explained as follows: Upon contact 253 

with water, NMP diffuses into the outer bulk fluid and water diffuses into the liquid NMP 254 

formulation. Since PLGA is soluble in NMP, but not in water, at a certain time point the 255 

polymer precipitates (once the solubility of the polymer in the water/NMP mixture is reached). 256 

This process likely starts at the “formulation – aqueous bulk fluid” interface, because the water 257 

concentration is highest and the NMP concentration lowest at this location. The continuous 258 

decrease in PLGA solubility in the NMP/water mixture (the NMP content decreases, whereas 259 

the water content increases) leads to continued polymer precipitation. Thus, the PLGA “shell” 260 

becomes thicker and thicker, growing “inwards”. Once all PLGA has precipitated, potentially 261 

remaining inner volumes (here the centers of the implants) cannot be filled with polymer and 262 

become water-filled cavities. Please note that complete solvent exchange took up to several 263 

days in this study: Thus, the implant cores remained liquid for a significant period of time. 264 

Importantly, no noteworthy impact of the bulk fluid volume on this cavity formation was 265 

observed.  266 

Figures 2a and b show the resulting dexamethasone release kinetics and the dynamic 267 

changes of the systems’ water/NMP contents over time. The water/NMP contents of the 268 

implants were determined gravimetrically as the difference between the wet and dry mass of 269 

the withdrawn samples (before and after freeze-drying). As it can be seen, the drug release 270 
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curves were virtually overlapping for the investigated bulk fluid volumes (2.25 vs. 4.5 mL). 271 

Also, the resulting water/NMP contents were very similar. This can probably be attributed to 272 

the fact that NMP and water are freely miscible: So, there are no saturation effects, resulting in 273 

potentially reduced NMP diffusion rates into smaller (eventually more saturated) outer aqueous 274 

phases (and vice versa).  275 

Importantly, limited drug solubility effects in the surrounding release medium are unlikely 276 

to affect dexamethasone release from the in-situ forming implants at an initial drug loading of 277 

0.75 %: The solubility of dexamethasone in phosphate buffer pH 7.4 at 37 °C was determined 278 

to be 77 ± 4 µg/mL. In NMP, the drug is freely soluble. Thus, at early time points (when the 279 

surrounding bulk fluid contains considerable amounts of NMP) saturation effects in the 280 

surrounding bulk fluid are unlikely. Furthermore, even if assuming the absence of any NMP in 281 

the surrounding bulk fluid from day 3 on (this is a “worst case scenario” for the drug solubility), 282 

sink conditions were also provided for the remaining observation period (considering the drug 283 

solubility determined in pure phosphate buffer pH 7.4 at 37 °C). 284 

These findings are important, since they demonstrate that variations in the volume of the 285 

bulk fluid into which the PLGA/drug/NMP solutions are injected, are not substantially affecting 286 

the key properties of the resulting implants. In other words: The proposed in-situ forming 287 

implant formulations can be expected to be rather robust with respect to variations in the 288 

vitreous humor volumes encountered in vivo. 289 

 290 

3.2. Impact of the drug loading 291 

Figure 3 shows the impact of the initial drug loading of the in-situ forming implant 292 

formulations on the resulting dexamethasone release kinetics and the dynamic changes in the 293 

implants’ wet mass as well as water/NMP contents. The initial drug content was varied from 294 

0.25 to 7.5 %, as indicated. Please note that 100 µL of the formulation with the intermediate 295 
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drug loading (0.75 %) contain a similar drug dose as the commercially available drug product 296 

Ozurdex (0.7 mg) (Chan et al., 2011). The release medium was 2.25 mL phosphate buffer 297 

pH 7.4. Resomer RG 502H (30 %) was the polymer. Clearly, the relative drug release rates 298 

were similar for formulations loaded with 0.25 and 0.75 % dexamethasone (filled and open 299 

circles in Figure 2a), whereas the relative drug release rate was substantially lower at 7.5 % 300 

drug loading (filled triangles). This cannot be attributed to differences in the dynamic changes 301 

in the systems’ wet mass, as illustrated in Figure 3b (which were rather similar for all drug 302 

loadings). 303 

Given the limited solubility of dexamethasone in the release medium (77 ± 4 µg/mL in 304 

phosphate buffer pH 7.4 at 37 °C), one hypothesis can be that the substantially reduced drug 305 

release rate at 7.5 % initial dexamethasone loading is due to saturation effects. To evaluate the 306 

validity of this hypothesis, the renewal rate of the release medium was altered: Figures 4a and 307 

b show the resulting drug release kinetics and degrees of bulk fluid saturation (with respect to 308 

the drug) observed at a higher and lower sampling frequency (at each sampling time point, the 309 

release medium was completely renewed). The degrees of saturation of the release medium 310 

were calculated based on the solubility of dexamethasone in phosphate buffer pH 7.4 at 37 °C. 311 

Since the surrounding bulk fluid contained important amounts of NMP at early time points, and 312 

since dexamethasone is soluble in NMP, no values are indicated in the first week (Figure 4b). 313 

Clearly, the higher sampling frequency lead to faster drug release after about 1 week, 314 

corresponding to lower degrees of bulk fluid saturation with the drug. Furthermore, after about 315 

3 weeks, the degree of bulk fluid saturation substantially decreased (to about 10 % = sink 316 

conditions) in the case of the higher sampling frequency, while the release rate decreased. These 317 

observations indicate that saturation effects likely refer to both: dexamethasone saturation in 318 

the surrounding bulk fluid as well as drug saturation effects within the implants: At an initial 319 

drug loading of 7.5 %, important parts of the dexamethasone can be expected to precipitate 320 
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within the in-situ forming PLGA implants upon water penetration into and NMP leaching out 321 

of the system. Consequently, dissolved and non-dissolved dexamethasone co-exist within the 322 

implant. It has to be pointed out that only dissolved drug is available for diffusion and can be 323 

released into the surrounding bulk fluid (Siepmann and Siepmann, 2012, 2008). Hence, drug 324 

release is also likely to be limited by saturation effects within the implants.  325 

Please note that during the first week, the observed dexamethasone release rates were very 326 

similar for the lower and higher sampling frequency (filled and open circles in Figure 4a). This 327 

might be explained by the fact that during this time period noteworthy amounts of NMP were 328 

still present within the implants and the surrounding bulk fluid (limiting the importance of drug 329 

saturation effects). 330 

Furthermore, the initial drug loading had no major impact on the resulting dynamic changes 331 

in the implants’ wet mass over time (Figure 3b). The latter increased during the first 2.5 weeks, 332 

and then decreased again. The initial increase can be attributed to the progressing PLGA 333 

degradation and subsequent water penetration into the more and more hydrophilic polymer 334 

matrices. The subsequent decrease is likely attributable to the dissolution/disappearance of the 335 

remnants (more hydrated regions dissolving faster than less hydrated regions). The water/NMP 336 

contents were very high during the observation period, irrespective of the initial drug loading 337 

(Figure 3c). 338 

 339 

3.3. Impact of the PLGA polymer molecular weight 340 

The effects of the polymer molecular weight of the PLGA on drug release and the dynamic 341 

changes in the implants’ wet mass as well as water/NMP contents upon exposure to phosphate 342 

buffer pH 7.4 are illustrated in Figure 5: Resomer RG 502H (Mw about 15 k Da) and Resomer 343 

RG 504H (Mw about 45 k Da) are compared. The initial dexamethasone loading was 0.25 %, 344 

the polymer concentration in the liquid formulation was 30 %, and the volume of the release 345 
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medium was 2.25 mL. As it can be seen, the polymer molecular weight substantially impacted 346 

the dynamic changes in the systems’ wet mass and water/NMP content: Implants based on 347 

longer chain PLGA took up fundamentally less water than systems based on shorter chain 348 

PLGA. This can be attributed to the facts that: (i) longer chain PLGA is more hydrophobic than 349 

shorter chain PLGA, and (ii) longer chain PLGA is likely to precipitate earlier than shorter 350 

chain PLGA upon water penetration into the system and NMP diffusion out of the formulation. 351 

The observed differences in the wet mass of the implants based on shorter and longer chain 352 

PLGA (Figure 5b) are consistent with the different water/NMP contents of systems (Figure 5c). 353 

Whereas the implants based on the more hydrophilic Resomer RG 502H show high water 354 

contents right from the beginning, the water contents of Resomer RG 504H-based systems was 355 

initially substantially lower, but significantly increased during the observation period (due to 356 

the progressive polymer chain cleavage). From a practical point of view, substantial implant 357 

swelling should be avoided to minimize any related side effects in vivo. This might for instance 358 

be achieved via the selection of appropriate PLGA molecular weights or monomer (lactic acid: 359 

glycolic acid) ratios, or specific additives (Do et al., 2014, 2015a,b). 360 

Interestingly, these substantial differences in the implants’ compositions and water uptake 361 

behaviors are “not fully” reflected in the observed release kinetics (Figure 5a). This is because 362 

drug release was almost complete within the first few days: the time period of implant 363 

formation. For instance, after 4 d only 3.8 ± 0.8 and 10.5 ± 1.0 % dexamethasone remained 364 

trapped within the implants based on Resomer RG 502H and Resomer RG 504H, respectively. 365 

These amounts were slowly released during the subsequent 3 weeks. The observed slower drug 366 

release from Resomer RG 504H-based implants compared to Resomer RG 502H-based 367 

implants can at least partially be attributed to the lower water contents of the systems (and, thus, 368 

denser polymer networks). Please note that with other drugs, which are not almost completely 369 

released within the first few days during implant formation, substantial differences in the 370 



16 
 

 
 

resulting release kinetics can be expected from Resomer RG 502H- and Resomer RG 504H-371 

based implants, due to the fundamentally different conditions for drug release in these systems 372 

(Figures 5b and c). 373 

 374 

3.4. Impact of the polymer concentration 375 

Figure 6 shows the observed dexamethasone release kinetics from in-situ formed implants 376 

prepared with drug-polymer solutions in NMP containing 30 vs. 45% Resomer RG 502H, or 377 

15 vs. 30 % Resomer RG 504H. Please note that in the latter case, higher polymer 378 

concentrations lead to considerable viscosities, rendering injection difficult. The volume of the 379 

release medium was 2.25 mL, the initial drug content 0.25 %. As it can be seen, the polymer 380 

concentration in the liquid formulations affected the resulting drug release kinetics, irrespective 381 

of the PLGA polymer molecular weight: With increasing polymer concentration the 382 

dexamethasone release rate decreased. This can at least partially be attributed to differences in 383 

the implants’ inner structure, as shown in Figure 7: At the top, cross-sections of freeze-dried 384 

implants based on Resomer RG 502H are illustrated, at the bottom cross-sections of implants 385 

based on Resomer RG 504H. The implants were lyophilized after 3 d exposure to phosphate 386 

buffer pH 7.4. Again, please note that caution should be paid because of potential artifact 387 

creation during freeze-drying. The dashed regions indicate the hollow central implant cavities. 388 

Clearly, higher polymer concentrations in the liquid formulations lead to smaller cavities. This 389 

can be attributed to the fact that PLGA precipitation started at the “liquid formulation – aqueous 390 

bulk fluid” interface. Subsequent PLGA precipitation “filled” the in-situ forming implants. In 391 

the case of higher polymer concentrations, more polymer was available to fill the interior of the 392 

systems, resulting in smaller cavities. The thicker the polymer shells, the longer are the 393 

diffusion pathways through the PLGA matrices to be overcome by the trapped drug. Thus, 394 
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higher polymer concentrations in the formulations lead to thicker polymer shells/barriers and, 395 

hence, slower drug release (irrespective of the polymer molecular weight). 396 

Furthermore, the smaller central implant cavities at higher initial PLGA concentrations 397 

resulted in lower increases in the systems’ wet mass and lower water contents, irrespective of 398 

the PLGA polymer molecular weight (Figures 8 and 9). Figures 10 to 12 illustrate the dynamic 399 

changes in the polymer molecular weight (Mw) of the PLGA, the pH of the surrounding bulk 400 

fluid and the dry mass loss kinetics of the systems. Importantly, the smaller central implant 401 

cavities observed at higher initial polymer concentrations lead to accelerated ester chain 402 

cleavage (Figure 10: open symbols always below filled symbols). This can be attributed to an 403 

increase in the importance of autocatalytic effects in these systems: Water is present throughout 404 

the implants, thus, polymer chain cleavage occurs in the entire polymer matrices. The generated 405 

(water-soluble) shorter chain acids slowly diffuse into the surrounding bulk fluid, where they 406 

are (at least partially) neutralized. In addition, bases from the surrounding phosphate buffer 407 

diffuse into the implants and neutralize (at least partially) the generated acids. However, the 408 

rate at which the acids are generated within the implants can be higher than the rate at which 409 

they are neutralized. Consequently, the micro-pH can locally drop (Brunner et al., 1999; Ding 410 

and Schwendeman, 2004; Li and Schwendeman, 2005; Ding and Schwendeman, 2008; 411 

Schädlich et al., 2014), resulting in pH gradients within the implants. Since hydrolytic ester 412 

bond cleavage is catalyzed by protons, PLGA degradation is accelerated at locations with low 413 

pH values (Grizzi et al., 1995; Lu et al., 1999). The importance of such autocatalytic effects 414 

strongly depends on the systems’ dimensions and porosity (Siepmann et al., 2005; Klose et al., 415 

2006). With increasing polymer concentration in the liquid formulation the thickness of the 416 

polymer “shells” increases (Figure 7), hence, autocatalysis is likely more pronounced. The 417 

experimentally measured PLGA degradation kinetics shown in Figure 10 clearly confirm this 418 

hypothesis: The polymer backbone is more rapidly cleaved at higher PLGA concentrations 419 
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(open vs. filled symbols). Interestingly, this faster PLGA degradation at higher polymer 420 

concentrations is not reflected in the drug release kinetics (Figure 6), demonstrating the 421 

dominance of the thickness of the PLGA shells (the lengths of the diffusion pathways through 422 

the polymeric matrices) in this case. 423 

Furthermore, the diffusion of the short chain acids out of the implants into the surrounding 424 

bulk fluid can lead to a decrease in pH of the latter. As it can be seen in Figure 11, decreasing 425 

pH values of the release medium were indeed observed in all cases. At higher polymer 426 

concentrations the “pH drops” were much more pronounced than in the case of lower PLGA 427 

concentrations, irrespective of the polymer molecular weight. This can probably be attributed 428 

to the fact that thicker polymer “shells” are created at high PLGA concentrations, resulting in 429 

more pronounced autocatalytic effects (since the generated short chain acids more slowly 430 

diffuse out and bases from the release medium more slowly diffuse in, due to the longer 431 

diffusion pathways to be overcome). The potential consequences of (slight) acidifications of 432 

the surrounding environment in vivo should be addressed in future studies. The fact that 433 

dexamethasone is an anti-inflammatory drug might help minimizing tissue irritation, but 434 

caution should be taken when speculating on these aspects based on in vitro data. 435 

Comparing the dynamic changes in the pH values of the surrounding bulk fluids in the case 436 

of implants based on Resomer RG 502H and Resomer RG 504H (Figure 11 a vs. 11b), it can 437 

be seen that the “pH drops” occur at later time points in the case of the longer chain PLGA. 438 

This can at least partially be attributed to the fact that the initial polymer molecular weight was 439 

higher, thus, more time is needed to generate short chain, water-soluble acids, which can diffuse 440 

out. Interestingly, the “clear pH drops” in the bulk fluid observed at higher polymer 441 

concentrations (open symbols in Figures 11a,b) are followed by distinct increases in the 442 

systems’ dry mass loss (open symbols in Figures 12a,b): The dry mass loss nicely reflects the 443 

leaching of the shorter chain (water-soluble) acids out of the implants into the release medium.  444 
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4. Conclusion 445 

In-situ forming PLGA-based implants offer an interesting potential for ocular 446 

dexamethasone delivery. Importantly, the systems can be expected to be rather robust with 447 

respect to variations in the vitreous humor volumes encountered in vivo. Depending on the 448 

initial drug loading, drug saturation effects within the implants and in the surrounding aqueous 449 

medium can play an important role for the control of dexamethasone release. The polymer 450 

molecular weight as well as the PLGA concentration in the liquid formulations determine how 451 

the macromolecules precipitate as well as the extent and rate of system swelling. These are key 452 

features, being decisive for the mobility of water, drug, polymer degradation products and bases 453 

within the system. For example, they affect the thickness of the polymer shell, water content of 454 

the system and importance of local drops in the micro-pH (and, thus, autocatalysis). The inner 455 

implant structure and conditions for mass transport within the in-situ forming implants 456 

determine polymer degradation and drug release. 457 

In the future, the toxicity of the solvent NMP for the ocular tissue as well as the potential 458 

consequences of local drops in pH due to leaching of PLGA degradation products should be 459 

studied in vivo. It would also be interesting to investigate the effects of the monomer ratio 460 

(lactic acid to glycolic acid) of the PLGA as well as the impact of potential additives, altering 461 

the formation of the implants and the conditions for mass transport. Such formulation changes 462 

might be used to adjust desired release kinetics for given drugs and drug doses during specific 463 

target release periods. 464 

  465 
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Figure legends 685 

 686 

Fig. 1. Macroscopic pictures of implants formed in-situ upon exposure to phosphate buffer 687 

pH 7.4 before and after freeze drying (surfaces and cross-sections). The formulations 688 

contained 0.75 % dexamethasone and 30 % PLGA 502H. The volume of the release 689 

medium was 2.25 mL (left column) or 4.5 mL (right column). The pictures were taken 690 

after 3 d. The dashed regions highlight the hollow cores of the implants. 691 

Fig 2. Impact of the volume of the release medium (phosphate buffer pH 7.4) on: a) drug 692 

release, and b) the dynamic changes in the water/NMP content of in-situ forming 693 

implants. The formulations contained 0.75 % dexamethasone and 30 % PLGA 502H. 694 

Mean values +/- standard deviation are indicated (n=3). 695 

Fig. 3. Impact of the initial drug loading (indicated in the diagrams) of in-situ forming 696 

implants on the resulting: a) drug release kinetics, b) dynamic changes in the wet mass 697 

and c) dynamic changes in the water/NMP content of the systems after exposure to 698 

phosphate buffer pH 7.4. The formulations contained 30 % PLGA 502H. The volume 699 

of the release medium was 2.25 mL. Mean values +/- standard deviation are indicated 700 

(n=3). 701 

Fig. 4. Impact of the sampling frequency during the drug release measurements on: a) the 702 

cumulative relative amount of drug released, and b) the degree of saturation of the 703 

withdrawn samples. The formulations contained 7.5 % dexamethasone and 30 % 704 

PLGA 502H. The volume of the release medium was 4.5 mL. Mean values +/- 705 

standard deviation are indicated (n=3).  706 

Fig. 5. Importance of the polymer molecular weight of the PLGA (Resomer 502H vs. 504H) 707 

for: a) drug release, b) the dynamic changes in the wet mass, and c) the dynamic 708 

changes in the water/NMP content from/of implants formed in-situ upon exposure to 709 

phosphate buffer pH 7.4. The formulations contained 0.25 % dexamethasone and 710 
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30 % PLGA. The volume of the release medium was 2.25 mL. Mean values +/- 711 

standard deviation are indicated (n=3). 712 

Fig. 6. Impact of the PLGA concentration in the formulation on the resulting dexamethasone 713 

release kinetics from in-situ formed implants upon exposure to 2.25 mL phosphate 714 

buffer pH 7.4: a) PLGA 502H and b) PLGA 504H. The drug content was 0.25 %. 715 

Mean values +/- standard deviation are indicated (n=3). 716 

Fig. 7. Macroscopic pictures of cross-sections of freeze-dried in-situ formed implants after 717 

3 d exposure to 2.25 mL phosphate buffer 7.4. The formulations contained 0.25 % 718 

dexamethasone and 30 % or 45 % PLGA 502H or 15 % or 30 % PLGA 504H. The 719 

cross-sections were obtained by manual breaking. All implants were hollow, the 720 

cavities are highlighted by the dashed areas. 721 

Fig. 8. Impact of the PLGA concentration in the formulation on the dynamic changes in the 722 

wet mass of implants formed in-situ upon exposure to 2.25 mL phosphate buffer 723 

pH 7.4: a) PLGA 502H and b) PLGA 504H. The formulations contained 0.25 % 724 

dexamethasone. Mean values +/- standard deviation are indicated (n=3). 725 

Fig. 9. Effects of the PLGA concentration in the formulation on the dynamic changes in the 726 

water/NMP content of implants formed in-situ upon exposure to 2.25 mL phosphate 727 

buffer pH 7.4: a) PLGA 502H and b) PLGA 504H. The formulations contained 728 

0.25 % dexamethasone. Mean values +/- standard deviation are indicated (n=3). 729 

Fig. 10. Impact of the PLGA concentration in the formulation on PLGA degradation in 730 

implants formed in-situ upon exposure to 2.25 mL phosphate buffer pH 7.4: a) PLGA 731 

502H and b) PLGA 504H. The formulations contained 0.25 % dexamethasone. Mean 732 

values +/- standard deviation are indicated (n=3). 733 

Fig. 11. Effects of the PLGA concentration in the formulation on the dynamic changes in the 734 

pH of the release medium surrounding implants formed in-situ upon exposure to 735 
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2.25 mL phosphate buffer pH 7.4: a) PLGA 502H and b) PLGA 504H. The 736 

formulations contained 0.25 % dexamethasone. Mean values +/- standard deviation 737 

are indicated (n=3). 738 

Fig. 12. Impact of the PLGA concentration in the formulation on the dry mass loss of implants 739 

formed in-situ upon exposure to 2.25 mL phosphate buffer pH 7.4: a) PLGA 502H 740 

and b) PLGA 504H. The formulations contained 0.25 % dexamethasone. Mean values 741 

+/- standard deviation are indicated (n=3). 742 

  743 
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