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Abstract

In this chapter, we develop new indicators and statistical tests to characterize patterns of
crop diversity at local scales to better understand interactions between ecological and
socio-cultural functions of agroecosystems. Farms, where a large number of crops (spe-
cies or landraces) is grown, are known to contribute a large part of the locally available
diversity of both rare and common crops but the role of farms with low diversity remains
little understood: do they grow only common varieties—following a nestedness pattern
typical of mutualistic networks in ecology—or do ‘crop–poor’ farmers also grow rare
varieties? This question is pivotal in ongoing efforts to assess the local-scale contribution
of small farms to global agrobiodiversity. We develop new network-based approaches
to characterize the distribution of local crop diversity (species and infra-species) at the
village level and to validate these approaches using meta-datasets from 10 countries.
Our results highlight the sources of heterogeneity in crop diversity at the village level.
We often identify two or more groups of farms based on their different levels of diver-
sity. In some datasets, ‘crop–poor’ farms significantly contribute to the local crop diver-
sity. Generally, we find that the distribution of crop diversity is more heterogeneous at
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the species than at the infra-species level. This analysis reveals the absence of a general
pattern of crop diversity distribution, suggesting strong dependence on local agro-
ecological and socio-cultural contexts. These different patterns of crop diversity distri-
bution reflect an heterogeneity in farmers’ self-organized action in cultivating and
maintaining local crop diversity, which ensures the adaptability of agroecosystems to
global change.

1. INTRODUCTION

Agriculture relies on the use of crop plant species to provision human

societies with food, clothing, medicinal and narcotic substances, fodder for

domestic animals, building materials and more recently with biofuel. Plant

crop species were domesticated from wild ancestors, which often display

variability in traits adapted to the local environment. During domestication,

only a subset of diversity from the wild ancestors was selected, and shaped by

the goals of farmers to produce a diversity of landraces, named and managed

as distinct entities (Diamond, 2002). Furthermore, different crop species

play distinctive, often complementary, roles in agriculture. For instance,

including legumes in rotations or in associations with cereals limit the use

of external inputs of fertilizer by increasing nutrient inputs through nitrogen

fixation (Drinkwater et al, 1998). In many agroecosystems, the end result of

these processes of selection among wild diversity, i.e., selection in farmers’

fields and adoption of numerous kinds of crops, is a substantial increase in the

diversity of cultivated plants, both in terms of the number of species and

landrace diversity within species ( Jarvis et al., 2008). Modernization of agri-

culture in industrialized countries during the twentieth century increased

agricultural productivity thanks to uniformization, i.e., reduction of the

number of crop species and varieties and genetic homogenization of varieties

(Bonneuil et al., 2012). This genetic erosion was accompanied by the dis-

ruption of interactions among crop and wild species (Macfadyen and

Bohan, 2010). This strategy also required an intensive use of fertilizers, pes-

ticides, water and fossil fuels, creating strong environmental perturbations,

including habitat fragmentation, soil erosion, water pollution, causing great

reduction of wild biodiversity (MEA, 2005). Ecological, economic and

social consequences of intensive agriculture are now identified and formal-

ized by the Millennium Ecosystem Assessment. Recommendations for lim-

iting these treats rely on an ecosystemic and transdisciplinary approach to the

problem (Mulder et al., this issue). Central to this approach is identifying
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trade-offs and synergies among ecological functional groups within ecosys-

tems, and estimating their impacts on provisioning, regulating, supporting

and cultural services. To maintain ecological synergies, manage trade-offs

and sustain ecosystem resilience, values are assigned for these services and

stakeholders are influenced through recognition, incentives and rewards

based on these values (see Butterfield et al., 2015, for more details). The same

conceptual framework is applied to manage agroecosystems (agro-ecology),

considering trade-offs between agroecosystem functions (pollination, eco-

logical pest control, etc.) and provision of goods (MEA, 2005). This

agro-ecological approach to agriculture is not fully satisfying because it often

neglects social and cultural processes directly linked to agriculture, such as

local knowledge concerning farming practices, which can make important

contribution to ensuring the sustainability of agroecosystems ( Jackson et al.,

2007; Martin et al, 2010). In this chapter, we consider agricultural systems as

socio-agroecosystem in which social and cultural functions need to be

examined in addition to ecological functions. More attention must be paid

to farmers’ practices in highly diversified systems, because these practices

play a role in creating and maintaining diversity, which is often of great

importance to system functioning. Understanding the interactions of these

practices with biological and ecological processes is necessary to improve our

understanding and management of synergies and trade-offs occurring in

agroecosystems.

A primary requisite for understanding and predicting the sustainability of

agroecosystems facing environmental, political, social and economic

changes is to assess how these systems manage crop diversity (e.g.

Samberg et al., 2013). For instance, in the case of manioc cultivated by

the Makushi Amerindians of Guyana, some varieties are specially grown

for particular dishes, some grow quickly thereby ensuring early yield, while

still others grow slowly and act as an ‘ever-present’ insurance resource (Elias

et al., 2000). Often, diversity is simply valued for its own sake (Boster, 1985),

or as a means to foster social relations (Emperaire and Peroni, 2007; Heckler

and Zent, 2008). Another example of crop biodiversity maintenance is the

great diversity of landraces present in the milpas of Meso-America, which

are the end product of several 1000 years of directed selection on maize,

beans, squash and chilli peppers by the farmers of the region (Tuxill

et al., 2010). Understanding relationships among landraces makes it possible

to gain insight into the cultural history. The particular traits exhibited by

local varieties grown in milpas today reflect Yucatan farmers’ short- and

long-term responses to agro-environmental conditions, the ecological
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demands of crop production and the aesthetic, culinary and religious sensi-

bilities of farmers (Tuxill et al., 2010). Farming practices that maintain crop

diversity are of paramount importance in helping crops and farmers adapt to

global changes, notably climate change (Vigouroux et al., 2011) and the

increasingly rapid emergence of agricultural pests (Diamond, 2002). In addi-

tion, cultivating diverse crops and varieties at the landscape level favours

ecological and economic sustainability by reducing the need for chemical

inputs (Bianchi et al., 2006; Crowder et al., 2010). Crop diversity also pro-

vides an insurance value. Although some combinations of species or varieties

may be functionally redundant in a agroecosystem, at least at a given time, a

subset of species and varieties may confer to the system the capacity to adapt

to environmental fluctuations (Di Falco and Perrings, 2005; Jackson et al.,

2007; Smale et al., 1998).

The spatial distribution of crop diversity is expected to be partially

explained by environmental factors, due to the differential adaptation of

crops to local conditions (Mariac et al., 2011). For instance, crops require

different physiological adaptations to cope with limiting factors associated

with dry and wet climates. Moreover, selective pressures in cultivated envi-

ronments differ from those in wild environments. However, unless massive

inputs liberate crops from environmental constraints, adaptation to local abi-

otic environments is expected to shape crop diversity—as it shapes the diver-

sity of wild plants—at more or less large spatial scales, over latitudinal or

elevational gradients (Vigouroux et al., 2011). At fine spatial scales, local

adaptation is also expected to play a role in the distribution of crop diversity,

due to the heterogeneity of soil quality of agricultural fields and to variability

in local rainfall (Fraser et al., 2012).

In addition to environmental factors, it has been argued that crop diver-

sity can only be understood if social and cultural aspects of the contextual

environment are taken into account (Leclerc and Coppens

d’Eeckenbrugge, 2012; Rival andMcKey, 2008). Agricultural societies have

shaped the diversity of their cultivated crops in ways that fit their traditions,

habits, myths, social organizations and livelihoods (Delêtre et al., 2011;

Labeyrie et al., 2013). Indeed, crops and humans have likely evolved

together, as cultural practices may have been shaped by available edible

plants and agricultural selection may have answered cultural needs. The

study of crop genetic and inter-specific diversity in the context of both

environment- and society-driven selective pressures is now taken into

account through the G�E�S framework (Leclerc and Coppens

d’Eeckenbrugge, 2012). Thus, studying the distribution of crop diversity
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and linking it with both social and environmental factors cannot be based on

a solely biological perspective. However, interdisciplinary studies of the dis-

tribution of crop diversity must retain quantitative rigour and thus be based

on a sound statistical framework. To date, the distribution of crop diversity

has been assessed mostly through the use of diversity indices adopted from

ecology and economics, indices of richness, evenness, concentration, etc.

(e.g. Jarvis et al., 2008). These indices only make use of crop diversity data

as an instance of ‘type in location’ data and this limits the questions that can

be addressed. They can help explain why crops are found in the fields they

are in, but not why farmers decided to cultivate a given crop, for example.

We failed to find any studies that even came near to exploiting the potential

of analyses of the network*1 feature of crop-by-farms datasets which

includes social aspects, such as farmer-to-farmer circulation of seeds (and

other propagules) of varieties and crop species. These bipartite networks*
are composed of two kinds of nodes* representing a farm or a crop (species

or landrace); an edge* connects two kinds of nodes and means that a partic-

ular crop is grown in a particular farm.

Ourmain goal in this chapter is to answer the question ‘which farms con-

tribute, and how, to the diversity of crops grown in a given village?’ by

examining inventories of crops species and landraces grown at the farm level.

To do this, we offer a novelmethodological framework using network-based

and null model-based statistical tests. From a methodological perspective,

inventory datasets can be construed as bipartite networks, namely crop-

by-farm interaction networks*, in the same way as plant–pollinator or

host–parasite interaction networks in ecology. In social network analysis,

network approaches have been used to assess the properties of network pro-

cesses linked to social institutions, such as friendship, advice or seed

exchange networks (‘who interacts with whom’ or ‘who gives to whom’)

(Lazega et al., 2012; Reyes-Garcı́a et al., 2013; Wasserman and Faust,

1994). In ecology, on the other hand, networks have been used to study

both contact networks (metapopulations or metacommunities) and struc-

tured interaction networks*, such as food webs (herbivore–host plant net-

works) or mutualistic networks (plant–pollinator networks). When

interaction partners can be clearly categorized (plants, pollinators; plants,

herbivores and parasitoids), the use of bi- or multi-partite networks is an

appropriate approach. In the present study, we develop a framework for

the study of crop-by-farm datasets that makes use of the bipartite nature

1 * indicates that the word or expression is defined in Glossary section.
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of the data to reveal potential patterns in the structure of diversity at the scale

of the village or the clusters of interacting villages.

Our paper offers an alternative to the nestedness* approach, for several

reasons that are detailed below. The study of bipartite networks in ecology is

a recent endeavour ( Jordano, 1987). Over the past three decades, the topo-

logical properties of bipartite networks have been studied to answer a variety

of questions, such as whether the networks are stable, robust to species

extinctions or additions, functionally redundant, etc. (Astegiano et al.,

2015; Gil et al., 2015; Jordano et al., 2003; Thébault and Fontaine,

2010). In particular, the nestedness of mutualistic bipartite networks has

often been investigated and studies suggest that nestedness may be the

key property explaining the dynamics and structural stability of mutualistic

networks (Thébault and Fontaine, 2010). In spatial ecology studies, nested

patterns are often explained as resulting from source–sink processes wherein

species–rich locations function as sources producing many emigrating indi-

viduals which, in turn, contribute to the diversity in species–poor, sink loca-

tions (Atmar and Patterson, 1993). In mutualistic interaction networks,

nestedness can be understood as arising from feasibility constraints on the

existence of specialist–specialist interactions, i.e., nestedness decreases effec-

tive inter-specific competition and thus increases the number of species that

can coexist (Bascompte and Jordano, 2007; Bastolla et al., 2009). In systems

involving social as well as ecological processes, such as in the present case of

crop-by-farm interactions, one may ask whether this nestedness pattern

holds, as crops present in less diverse (crop–poor) farms could comprise a

subset of those cultivated inmore diverse farms. Among the Duupa in north-

ern Cameroon, for example, older farmers accumulate crop diversity during

their life (sources) and become sources of diversity for young farmers (sinks)

(Alvarez et al., 2005). When crops are actively cultivated by farmers, for

example, as staple food, copying other farmers’ portfolios of crops might

result in strong similarities in cultivated diversity among fields, but not

necessarily following a nested pattern. Therefore, contrary to the case for

ecological systems, certain mechanistic reasons may justify considering

crop-by-farm interactions as systematically nested, precluding explanations

solely based on source–sink processes.

From a purely methodological perspective, the available indices of net-

work nestedness are inconsistent, both in the value of nestedness metrics and

in their associated p-value when confronted with the configuration model*;
a null model of partner interactions constrained by degree*, i.e., fixing the
degree of rows and columns (Podani and Schmera, 2012). Although
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nestedness remains a largely verbal concept and its mathematical definition is

in need of refinement, being able to detect nested patterns in crop diversity

would be useful for characterizing the diversity of strategies used by farmers

to cope with different socio-cultural and environmental contexts.

In Section 2, we introduce a meta-dataset of specific and infra-specific

crop diversity at the local scale in different agricultural contexts. In

Section 3, we describe our methodological framework, graphical represen-

tations when appropriate and the tests proposed, illustrated using ‘toy’, hypo-

thetical examples. Our approach allows us: (i) to test whether the variability

in the number of connections per farm and per crop type is different from

random expectations under a homogeneous random graph model*
(Erdős-Rényi model*); (ii) to reveal structure (modules, cores, etc.) in the

dataset using latent-blockmodels* (LBMs); (iii) to uncover ‘outliers’ (farmers

or crop types that do not conform to the general connection pattern) using

principal component analyses (PCAs); and (iv) to measure and test the orig-

inality of farmers’ contributions to overall crop diversity using beta-diversity

indices. In Section 4, we perform a meta-analysis applying the methodolog-

ical framework to our meta-dataset, which allows us to highlight both reg-

ularities and particularities among the datasets. Our approach yields graphical

representations of the different tests (reordering of interactions in the case of

LBMs or principal plane representations for PCAs) and non-parametric tests

of our hypotheses, the significance of which is assessed through comparison

with a permutation-based null model (the configuration model for graphs

with given degrees). These graphical and statistical approaches are designed

to be transferable to other similar problems in ecology. In Section 5, we dis-

cuss our results and the value and the limits of our approach.

2. DESCRIPTION OF THE DATASETS USED IN THE
META-ANALYSIS

Fifty published or unpublished datasets dealing with crop inventories

were provided by ethnobiologists, geographers and ecologists for analysis

(Tables 1 and 2). These data were collected in 10 different countries (Fig. 1)

between 1998 and 2013. For each dataset, a partial set or the full set of farms

from the same villagewas characterized for one of the twoclasses of operational

taxonomic units (OTU) considered: the species or the infra-species (landrace)

level. These data were gathered through direct interviews with the plant crop

cultivators in the farm, a subset of them or only with the head of the farm.

Datasetswere retainedwhenthenumberofcharacterized farmsandthenumber
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Table 1 Description of the 18 Datasets Dealing with Specific Diversity (OTU¼Species)

Dataset Country Community Village
Farm
Sample Size

Crop
Sample Size

Collect
Year Original Article

CL-M01 Kenya Tharaka Kamarandi 95 16 2010 Labeyrie et al. (2013)

CV-M01 Cameroon Tupuri Gulurgu-Lokoro 15 23 2011 Unpublished data

EG-M05 Cameroon Duupa farmers Ninga 14 58 2002 Garine and Raimond (2005)

EG-M08 Cameroon Duupa farmers Wante 18 68 2002 Garine and Raimond (2005)

OC-M02 Peru Corrientes River Boca del Copal 19 108 2003 Perrault-Archambault and

Coomes (2008)

OC-M04 Peru Corrientes River San Juan de

Trompeteros

35 120 2003 Perrault-Archambault and

Coomes (2008)

OC-M05 Peru Corrientes River San Juan de

Trompetero Nativo

22 108 2003 Perrault-Archambault and

Coomes (2008)

OC-M06 Peru Corrientes River San Jose de Porvenir 18 84 2003 Perrault-Archambault and

Coomes (2008)

OC-M07 Peru Corrientes River Nuevo Porvenir 22 83 2003 Perrault-Archambault and

Coomes (2008)

OC-M09 Peru Corrientes River Nuevo Paraiso 11 83 2003 Perrault-Archambault and

Coomes (2008)

OC-M10 Peru Corrientes River Nuevo Peruanito 15 88 2003 Perrault-Archambault and

Coomes (2008)

Continued
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Table 1 Description of the 18 Datasets Dealing with Specific Diversity (OTU¼Species)—cont'd

Dataset Country Community Village
Farm
Sample Size

Crop
Sample Size

Collect
Year Original Article

OC-M11 Peru Corrientes River Nuevo Pucacuro 54 161 2003 Perrault-Archambault and

Coomes (2008)

OC-M12 Peru Corrientes River Santa Rosa 14 124 2003 Perrault-Archambault and

Coomes (2008)

OC-M13 Peru Corrientes River Santa Elena 30 153 2003 Perrault-Archambault and

Coomes (2008)

OC-M14 Peru Corrientes River San Jose de Nueva

Esperanza

24 139 2003 Perrault-Archambault and

Coomes (2008)

OC-M16 Peru Corrientes River Valencia 21 147 2003 Perrault-Archambault and

Coomes (2008)

SC-M05 Vanuatu Vanua Lava,

Banks group

Eastern coast 15 37 2007–

2009

Unpublished data

SC-M06 Ecuador Huaorani Guiyero 13 15 2000 Unpublished data
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Table 2 Description of the 33 Datasets Dealing with Infra-Specific Diversity (OTU¼Landrace)

Dataset Country Community Village Species

Predominant
Propagation
Mode

Farms
Sample
Size

Crop
Sample
Size

Collect
Year

Original
Article

AB-M02 Cameroon Duupa

farmers

Wante Sorghum

(Sorghum bicolor)

Partially

outcrossing

13 23 2003 Unpublished

data

CL-M02 Kenya Tharaka Kamarandi Sorghum

(Sorghum bicolor)

Partially

outcrossing

95 20 2010 Labeyrie et al.

(2013)

CV-M02 Cameroon Tupuri Gulurgu-

Lokoro

Sorghum

(Sorghum bicolor)

Partially

outcrossing

15 22 2011 Unpublished

data

DJ-M003a Nepal Kaski village9 Rice (Oryza

sativa)

Inbreeding 33 24 2006 Jarvis et al.

(2008)

DJ-M003b Nepal Kaski village10 Rice (Oryza

sativa)

Inbreeding 52 32 2006 Jarvis et al.

(2008)

DJ-M003c Nepal Kaski village11 Rice (Oryza

sativa)

Inbreeding 24 21 2006 Jarvis et al.

(2008)

DJ-M003d Nepal Kaski village14 Rice (Oryza

sativa)

Inbreeding 25 18 2006 Jarvis et al.

(2008)

DJ-M009a Nepal Bara village1 Rice (Oryza

sativa)

Inbreeding 35 11 2006 Jarvis et al.

(2008)

DJ-M009b Nepal Bara village2 Rice (Oryza

sativa)

Inbreeding 29 12 2006 Jarvis et al.

(2008)

Continued
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Table 2 Description of the 33 Datasets Dealing with Infra-Specific Diversity (OTU¼Landrace)—cont'd

Dataset Country Community Village Species

Predominant
Propagation
Mode

Farms
Sample
Size

Crop
Sample
Size

Collect
Year

Original
Article

DJ-M009c Nepal Bara village3 Rice (Oryza

sativa)

Inbreeding 37 14 2006 Jarvis et al.

(2008)

DJ-M009d Nepal Bara village4 Rice (Oryza

sativa)

Inbreeding 14 8 2006 Jarvis et al.

(2008)

DJ-M009e Nepal Bara village5 Rice (Oryza

sativa)

Inbreeding 31 14 2006 Jarvis et al.

(2008)

DJ-M009f Nepal Bara village6 Rice (Oryza

sativa)

Inbreeding 29 16 2006 Jarvis et al.

(2008)

DJ-M012a Vietnam Dabac Cang Rice (Oryza

sativa)

Inbreeding 58 42 Jarvis et al.

(2008)

DJ-M012b Vietnam Dabac Tat Rice (Oryza

sativa)

Inbreeding 57 58 Jarvis et al.

(2008)

DJ-M015a Vietnam Nghiahung Dong Lac Rice (Oryza

sativa)

Inbreeding 58 42 Jarvis et al.

(2008)

DJ-M015b Vietnam Nghiahung Kien

Thanh

Rice (Oryza

sativa)

Inbreeding 57 58 Jarvis et al.

(2008)

DJ-M018a Vietnam Nhoquan Quang

Mao

Rice (Oryza

sativa)

Inbreeding 58 42 Jarvis et al.

(2008)
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DJ-M018b Vietnam Nhoquan Yen Minh Rice (Oryza

sativa)

Inbreeding 57 58 Jarvis et al.

(2008)

DJ-M030 Mexico Ichmul Multi-

village

Maize (Zea mays) Outcrossing 101 11 Jarvis et al.

(2008)

DJ-M036 Mexico Yaxcaba Yaxcaba Maize (Zea mays) Outcrossing 61 13 1999 Jarvis et al.

(2008)

DJ-M039a Hungary Dévaványa village1 Bean (Phaseolus

vulgaris, Phaseolus

lunatus, Vigna

unguiculata)

Inbreeding 13 10 Jarvis et al.

(2008)

DJ-M045b Hungary Szatmár-

Bereg

village2 Bean (Phaseolus

vulgaris, Phaseolus

lunatus, Vigna

unguiculata)

Inbreeding 18 12 Jarvis et al.

(2008)

DJ-M045c Hungary Szatmár-

Bereg

village3 Bean (Phaseolus

vulgaris, Phaseolus

lunatus, Vigna

unguiculata)

Inbreeding 10 12 Jarvis et al.

(2008)

DJ-M045d Hungary Szatmár-

Bereg

village4 Bean (Phaseolus

vulgaris, Phaseolus

lunatus, Vigna

unguiculata)

Inbreeding 12 10 Jarvis et al.

(2008)

Continued
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Table 2 Description of the 33 Datasets Dealing with Infra-Specific Diversity (OTU¼Landrace)—cont'd

Dataset Country Community Village Species

Predominant
Propagation
Mode

Farms
Sample
Size

Crop
Sample
Size

Collect
Year

Original
Article

JW-M07 Cameroon Nulda Sorghum

(Sorghum bicolor)

Partially

outcrossing

35 22 2008–2009 Unpublished

data

JW-M08 Cameroon Nulda Sorghum

(Sorghum bicolor)

Partially

outcrossing

45 24 2009–2010 Unpublished

data

JW-M09 Cameroon Nulda Sorghum

(Sorghum bicolor)

Partially

outcrossing

51 27 2011–2012 Unpublished

data

JW-M10 Cameroon Nulda Sorghum

(Sorghum bicolor)

Partially

outcrossing

15 21 2012–2013 Unpublished

data

ME-M01 Guyana Makushi

Amerindians

Rewa Cassava (Manihot

esculenta)

Clonal 24 75 1997–1998 Elias et al.

(2000)

SC-M04 Vanuatu Vanua Lava,

Banks group

Eastern

coast

Taro (Colocasia

esculenta)

Clonal 15 34 2007–2009 Unpublished

data

SC-M07 Ecuador Huaorani Guiyero Manioc (Manihot

esculenta)

Clonal 13 29 2000 Unpublished

data
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of cropswereboth greater than10.For 18datasets, informationwas collected at

the species level (Table 1); for 32datasets, informationwas collected at the land-

race level,whichcorresponds to the terminal taxon in the farmers’ local naming

systems,covering sevendifferent species (maize, rice,wheat,bean,manioc, taro

and sorghum) which correspond to the major crops of the areas under study

(Table 2). These species are characterized by their predominant propagation

mode (partially outcrossing, outcrossing, inbreeding and clonal) following

theclassificationproposedbyJarviset al. (2008).Datawere structured following

a rectangular incidence matrix* with farms in rows and species or landrace in

columns, and represented as a bipartite network.Data collected at the species or

infra-species level represent two levels of local crop biodiversity. Underlying

processes shaping the distribution of local crop diversity are assumed to be dif-

ferent for these two levels.Therefore, species and infra-species data are analysed

and described separately.

3. DESCRIPTION OF THE METHODOLOGICAL
FRAMEWORK

This section introduces the statistical framework for analysing crop-

by-farm network data. After defining the main concepts, we detail the four

Guyana

Ecuador

Cameroon

Mexico
Hungary

Kenya

Vietnam

Vanuatu

Nepal

Peru

DJ-M036

DJ-M030

CL-M01

CL-M02

EG-M05
EG-M08
AB-M02

CV-M01
CV-M02

JW-M07
JW-M08
JW-M09
JW-M10

DJ-M003a
DJ-M003b
DJ-M003c
DJ-M003d

DJ-M009a
DJ-M009b
DJ-M009c
DJ-M009d
DJ-M009e
DJ-M009f

DJ-M012a
DJ-M012b

DJ-M018a
DJ-M018b

DJ-M015a
DJ-M015b

DJ-M045b

DJ-M039a

ME-M01

SC-M06

SC-M05

SC-M04

SC-M07

OC-M02
OC-M04
OC-M05
OC-M06
OC-M07
OC-M09
OC-M10
OC-M11
OC-M12
OC-M13
OC-M14
OC-M16 

Figure 1 Map showing locations of the different datasets used in the meta-analysis.
Filled circles correspond to the datasets collected at the specific level and filled squares
correspond to the dataset collected at the infra-specific level.
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main steps of the analysis. First, the degree distribution of the data is evalu-

ated as a way to test whether a completely random model (Erdős-Rényi

model) fits well the data. Second, we use a LBM to investigate more thor-

oughly the structure of the network. This method pinpoints groups of farms

and groups of crops that tend to be highly connected. Third, we test whether

this high-level structure (blocks) is different from what can be expected sim-

ply by features of the low-level structure such as degree heterogeneity. The

methods comprised by these two last steps provide new graphical represen-

tations of the network data emphasizing the studied patterns. Finally, com-

plementary analyses based on diversity measures are introduced. In each

subsection, toy examples illustrate the purpose, the benefits and the limita-

tions of the proposed methods.

3.1 Mathematical Formalism
In the following, we denote n is the number of farms and m is the number of

crops. The incidence matrix (with farms as rows and crops as columns) that

summarizes the data is notedX, so that Xij ¼ 1 when farm i cultivates crop j.

Using this representation (Fig. 2A), we can readily apply statistical methods

for binary matrices.

Any incidence matrix can also be treated as the adjacency matrix of some

bipartite graph G. More specifically, consider a collection of nodes

corresponding to all farms and all crops (species or landraces) and put an edge

30
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07
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01

2
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1
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13

35
36

15
16

22
23

24
25

27
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31
44

45
46

48
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54

Landraces

F
ar

m
s

7 182 324 22 21 0340 5201 17 26

15
25 16

482
27

31
3544

22 1
23

36
12 1329

45 24 46
54 11

4910

A B

Landraces

Farms

Figure 2 (A) Example of an incidence matrix with farms in lines and crops in columns,
and where 0 are black cells and 1 are white cells and (B) example of a crop-by-farm
bipartite network between farms and landraces (dataset AB-M02).
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between the farm i and the crop j if and only if Xij ¼ 1. The obtained net-

work is bipartite (Fig. 2B) as no two farms and no two crops are connected in

the network. Building on this equivalence between incidence matrices and

bipartite graphs, we can borrow methodologies developed in the field of

network analysis (Kolaczyk, 2009).

As these two representations are equivalent, any statistical analysis could

be defined either in terms of the incidence matrix or in terms of the bipartite

network G. For ease of reading, this chapter makes use of the incidence

matrix terminology but we sometimes borrow network notations to empha-

size the connection with the literature on network analysis.

Summing over crop, the number of crops cultivated on farm i, Ci, is

Ci¼
X
j

Xij: (1)

Summing over farms, the number of farms where crop j is cultivated, Fj, is

Fj ¼
X
i

Xij (2)

Quantities N, Ci, Fj and Xij are finally linked by the following relations:

N ¼
X
i

Ci ¼
X
j

Fj ¼
X
i, j

Xij: (3)

Following network terminology,Ci is also called the farm’s degree and Fj
the crop’s degree.

3.2 Variability of Farms’ and Crops’ Degrees
3.2.1 Description of the Test on Degree Distributions
First, we evaluate whether all farms in the same village grow a similar number

of crop or if there is high heterogeneity between farms’ crop richness.

Formally, we test whether the degrees Fj follow binomial distributions by

considering a statistic T that compares the observed variance of the crops’

degree with the one that would have been expected if the degrees Ci were

following independent and identically distributed (iid) binomial distributions.

Trow :¼ dVar Cð Þ
np̂ 1� p̂ð Þ ;

where p̂¼N=nm is the density of the incidence matrix anddVar Cð Þ¼ 1= n�1ð Þ
Xn

i¼1
Ci�mp̂ð Þ2 is the empirical variance of (Ci),
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i¼ 1,…,n. Large Trow values suggest that the farms’ crop richness is highly

heterogeneous, whereas small Trow values suggest more equity. The statis-

tical significance of T is assessed by a parametric bootstrap method working

as follows. For i¼ 1,…,nsim, a new incidence matrix X(i ) is generated by

sampling independent Bernoulli distributions with parameters p̂ in each

entry. For all these matrices, the link density p̂ ið Þ, the empirical variance

of the farms’ degrees dVar ið Þ
Cð Þ and the variance ratio Trow

(i ) are computed.

Finally, the left and right p-values are, respectively, p valL,row :¼
# i:T

ið Þ
row<Trowf g
n

and p valR,row :¼ # i:T
ið Þ

row>Trowf g
n .

The crops’ degree distribution is evaluated in a similar fashion:

Tcol :¼
dVar Fð Þ
mp̂ 1� p̂ð Þ ;dVar Fð Þ¼ 1

m�1

Xm
j¼1

Fj�np̂
� �2

:

The corresponding p-values are also evaluated by parametric bootstrap. In

our analysis, the parameter nsim is fixed to 10,000.

Under an Erdős-Rényi null model, where all the entries of X follow

independent Bernoulli distributions with identical parameters, and the

farms’ and crops’ degrees follow binomial distributions. Consequently,

any small p-value (pvalL,row,pvalR,row,pvalL,col,pvalR,col) would indicate

that this Erdős-Rényi model is not realistic.

3.2.2 Application of the Test on Degree Distributions to a Toy Example
Figures 3–5 display three examples of incidence matrices. The last two

matrices were generated by organizing groups of crops and groups of farms

according to a LBM (see presentation in the next subsection). The farms

and the crops were sorted by degrees within groups. Note that this struc-

ture of groups is generally unknown in real datasets and has to be recovered

by statistical inference techniques. In Fig. 3, the incidence matrix was gen-

erated from iid. Bernoulli random variables. Hence, its row and column

degrees follow binomial distributions. This corresponds to the null hypoth-

esis of the test on the variance of degrees. The tests are non-significant for

this incidence matrix (Table 3). In Fig. 4, some farms were assumed to

grow more crops than others and some crops were assumed to be more

common than others. Therefore, as expected, the tests on the variance

of degrees show clearly an over-dispersion for farms and crops. In

Fig. 5, there exist particular associations between some groups of farms
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and some groups of crops although the degree is quite homogeneous for

farms; crops heterogeneity appears because the groups of farms are not

of the same size.

As illustrated in these three examples, the tests on the variance of degrees

may detect heterogeneity but some particular structure of association may be

Crops

F
ar

m
s

Figure 3 Incidencematrix with entries generated independently and identically distrib-
uted according to a Bernoulli distribution with probability 0.2.

Crops

F
ar

m
s

Figure 4 Incidence matrix generated with heterogeneous distribution for different
groups of crops and farms (see Fig. 7 in next subsection for details). Some farms grow
more crops than other and some crops are more common than others.
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missed as in the case of Fig. 5. Indeed, the tests are performed independently

on farms and on crops and thus are not able to detect patterns of association.

3.3 Revealing Data Structure Through LBMs
3.3.1 Description of the LBMs
In order to cluster the farms and the crops simultaneously on the basis of the

incidence matrix X, we propose to use a probabilistic model called LBM

(Govaert and Nadif, 2008; Keribin et al., 2014), which assumes a mixture

distribution both on the farms and crops. According to this model, the net-

work is generated relying on latent blocks (also called clusters) of farms and

Crops

F
ar

m
s

Figure 5 Incidence matrix generated with distribution implying particular association
between crops and farms (see Fig. 6 in next subsection for details). Two groups of crops
are mainly grown by corresponding subgroups of farms.

Table 3 p-Values for Tests on the Variability of Degrees for Farms and Crops (Left:
Under-Dispersion, Right: Over-Dispersion) Applied on the Three Toy Examples
Presented in Figs. 3–5

Farms Crops

Left Right Left Right

Fig. 3 0.8143 0.1857 0.6345 0.3655

Fig. 4 1 <0.001 1 <0.001

Fig. 5 0.1604 0.8396 0.9924 0.0076
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of crops. The probability that a crop j is grown on a farm i is conditioned to

these latent blocks and depends only on the block V(i) to which farm i

belongs and the block Wj to which crop j belongs. For all 1� i� n,

1� j�m, 1� q�Q and 1� l�L, the probability that i belongs to block

q, that j belongs to block 1 and the conditional probability of Xij given

the block Vi and Wj are, respectively, denoted

ℙ Vi¼ qð Þ¼ αq,
ℙ Wj ¼ l
� �¼ βl,

ℙ Xij ¼ 1jVi ¼ q,Wj ¼ l
� �¼ πql,

where θ¼ α1,…, αQ, β1,…, βL, π11,…, πQLð Þ is the vector of unknown

parameters to be estimated under the obvious constraints
X

q
αq ¼ 1,X

l
βl ¼ 1. This model is quite flexible because it can account not only

for situations where there is modularity, i.e., a unique block of crops is asso-

ciated with each block of farms and these farms tend to grow mainly crops

from that block and few from other blocks, but also for situations where

there are richer farms (growing significantly more crops than others) and/or

more common crops (grown by significantly more farms than others).

The standard procedures to obtain maximum likelihood estimates when

dealing with latent variables rely on the expectation–maximization (EM)

algorithm (Dempster et al., 1977). However, the computation of the con-

ditional distribution of the latent variables with respect to the observed data

is not tractable, which makes the E-step unfeasible. Following Govaert and

Nadif (2008), we use a variational approach to cope with this difficulty. The

number of blocks of farmsQ and the number of blocks of crops L are chosen

thanks to the integrated completed likelihood (ICL) criterion as proposed by

Keribin et al. (2014). Once the parameters have been estimated, we obtain as

a by-product the posterior probabilities ℙ Vi¼ qjXð Þ and ℙ Wi ¼ ljXð Þ, from
which the true blocks are estimated. We can then provide a new represen-

tation of the incidence matrix X where the rows (farms) and the columns

(crops) have been re-organized in homogeneous blocks. We used the

R package blockmodels (Leger, 2015) to perform the estimations and the

model selection.

3.3.2 Application of LBM to a Toy Example
Figures 6–8 are illustrations of the block clustering provided by the LBM in

three typical cases. The cases of Figs. 6 and 7 are the same as those in Figs. 5

and 4, respectively. The groups were considered as latent/unknown and the
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farms and crops were clustered in homogeneous blocks by using the infer-

ence procedure described above. This is illustrated in Fig. 6, where the same

incidence matrix is plotted before and after re-organization according to the

estimated blocks. In Fig. 6, the difference between the two groups of farms

comes from the two last groups of crops. The first group of crops is equally

Crops

A B

F
ar

m
s

Crops
F

ar
m

s

Figure 6 Incidencematrix generated according to a LBMwith three blocks of crops, two
blocks of farms and π¼ 0:5 0:1 0:6 0:5 0:6 0:1ð Þ. (A) Observed incidence matrix
and (B) same incidence matrix re-organized and clustered in homogeneous blocks
obtained by LBM inference.

F
ar

m
s

Crops

Figure 7 LBM clustering when the data are generatedwith two blocks of farms (rich and
poor farms), two blocks of crops (rare and common crops) and π¼ 0:7 0:3 0:4 0:2ð Þ.
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grown on farms of any group. In contrast, the second group of crops is

mainly grown by the second group of farms and the third group of crops

is mainly grown by the first group of farms. In Fig. 7, the farms can be sep-

arated on the basis of the number of crops that they grow. One group can be

said to be ‘rich’ and the other to be ‘poor’. Similarly, two groups are also

found for crops, one composed of common crops and the other of rare crops.

In Fig. 8, farms are similar and three crops are much more common than the

others. Since the difference is quite clear and there are three crops, the ICL

criterion for the LBM argues for recognition of a block with only three

crops. However, if there are only one or two outlier(s) or if the difference

is less clear, this criterion may not separate this (these) outlier(s). This crite-

rion for model selection is not designed for detecting outliers.

3.4 Uncovering Outliers Through PCA
3.4.1 Configuration Model
Fix the degree Cið Þi¼1,…,n of each farm and Fj

� �
j¼1,…,m of all crops in X.

The (bipartite) configuration model with parameters (Ci) and (Fj) is the uni-

form distribution over all incidence matrices that leave the degreesCi and Fj
unchanged. In the ecological literature, this model is sometimes referred to

as the fixed–fixed null model (Connor and Simberloff, 1979; Ulrich and

Crops

F
ar

m
s

Figure 8 LBM clustering when the data are generated with one block of farms, two
blocks of crops (one block with only three crops) and π¼ 0:9 0:3ð Þ.
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Gotelli, 2012; Zaman and Simberloff, 2002). In contrast to the LBM, the

configurationmodel takes as a given that some farms might growmanymore

crops than others and that some crops are more common than others, but

apart from that the incidence matrix is sampled uniformly.

In order to simulate according to the configuration model, we use the

tswap sequential algorithm (Miklós and Podani, 2004) implemented in

the permatswap function of the R package vegan. The practitioner has to

select burnin and thinning parameters large enough that the algorithm

explores well the space of incidence matrices. Although the mixing time

of the tswap algorithm is unknown, the mixing properties of the sequence

can be visually checked using the plot method of permatswap.

3.4.2 PCA on Residuals
The expected incidence matrix under the configuration model with degrees

(Ci) and (Fj) is denoted0 Xj Ci, Fj
� �� �

. Alternatively,0 Xj Ci, Fj

� �� �
can be

seen as the average overall permutations on the entries of X that keeps the

degree sequences for both crops and farms unchanged. Then, the residual

matrix R under the configuration model is the difference between the

observed incidencematrix and its expectation under the configurationmodel

Rij ¼Xij�0 Xijj Ci, Fj

� �� �
(4)

If the incidence matrixX was drawn according to the configuration model,

thenR would have no particular structure. In order to check the absence of

structure, we apply a (non-standardized) PCA onR. As it is customary for a

PCA, the projection of the rows (i.e. the farms) along the first principal

directions allows (i) discovery of groups of farms that effectively cultivate

the same types of crops and (ii) detection of outlier farms whose field crop

composition is unusual when the effect of farm richness has been removed.

As an example, a farm where a very high diversity is cultivated would not

necessarily be an outlier, but this farm will be considered as an outlier if it

does not grow some very common crops. The projection of the columns

ofR along the first principal directions provides information on outlier crop

or groups of crops.

3.4.3 Goodness-of-Fit Test of the Configuration Model
Assessing the statistical significance of the PCA is equivalent to testing

whether the network X has been drawn according to the configuration

model. The test rejects the null hypothesis when the largest eigenvalue in
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the scree plot is unusually large. More precisely, the test is calibrated by per-

mutationsXP ofX that leaves the degree of each row and column invariant.

Denote λmax the largest singular value ofR (i.e. the square-root of the largest

eigenvalue ofRtR), then the p-values are obtained by comparing the singu-

lar value λmax to the largest singular values of matrixRP arising from permu-

tations XP
.

Under the null hypothesis, the matrixR is pure noise and all the singular

values ofR should be small. Under the presence of outliers or of a few groups

of farms that preferentially cultivate some crops, the matrixR is expected to

be the sum of a noisy component and a low-rank component measuring the

deviance from the configuration model. As a consequence, the singular

value of R should be higher under the alternative than under the null

hypothesis.

Although calibrated differently, the largest singular value statistic has

been applied in other problems of community detection (Bickel and

Sarkar, 2015).

3.4.4 A New Representation of the Incidence Matrix
Ordering the farms according to the coordinate of their projection along the

first principal direction, we denote σ1(i) the farm index associated with the

ith smallest coordinate. Similarly, σ2( j) stands for the reordering of the crops
according to their projection on the first direction. These permutations

(σ1,σ2) define a new representation Y of the incidence matrix:

Yij ¼Xσ1 ið Þσ2 jð Þ (5)

This provides a visualization of the incidence matrix alternative to that

offered by the LBM approach.

3.4.5 Toy Examples
Let us describe three typical examples to understand the behaviour of the

above statistics. In all these examples, the number n of farms is set to

40 and the number m of crops set to 60.

First, we consider a model with degree heterogeneity. For each farm i¼
1,…,n and each crop j¼ 1,…,m, we draw iid uniform random variable ai
and bi in (0,1). Then, each entry Xij is drawn according to a Bernoulli dis-

tribution with parameter min(2aibj, 1). As a consequence, the incidence

matrixX exhibits large degree heterogeneity among farms (resp. crops) with

a low ai (resp. bi) value and farms (resp. crops) with a high ai (resp. bi). It is

therefore not unexpected that the LBM estimation procedure (Fig. 9A)
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recovers several groups of crops and farms. The p-value of configuration

model from Section 3.4.3 equals 0.54. Again, this is not surprising, since this

incidence matrix has been sampled from a model similar to the configuration

model. This implies that the block structure found by the LBMmethod can

be explained by the degree heterogeneity. As the configuration model resid-

uals are completely random here, both the PCA scree plot (Fig. 9B) and the

representation (Eq. 5) of the incidence matrix (Fig. 9C) are uninformative.

No farms and no crops have outlier PCA coordinates (Fig. 9D).

In the second example, we draw the incidence matrixX as above. Then,

we replace each entry of the first row by independent Bernoulli random var-

iables with parameter 0.5. As a consequence, the first farm is assumed to have

a completely different behaviour from all the other farms, as it grows crops

regardless of their scarcity (bj) in the village. The LBM representation

(Fig. 10A) is close to that of the first example (Fig. 9A). The p-value of

the configuration test is smaller than 10�3, and the scree plot exhibits an

unusually large first eigenvalue (Fig. 10B). The first farm is therefore

detected as an outlier by the first coordinate representation (Fig. 10D).
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Figure 9 First example to illustrate the method for uncovering outliers through princi-
pal component analysis: degree heterogeneity. (A) The LBM representation, (B) the scree
plot of the PCA residuals, (C) the representation of the incidencematrix according to the
PCA ordering (Eq. 5) and (D) the boxplots of the PCA first coordinates.
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Finally, the PCA-based representation (Fig. 10C) highlights the unusual

behaviour of this farm.

In the last example, we draw random variables ai and bj as above. Then,

the farms are divided into two groupsA1 andA2 of size n/2 and the crops are

divided into two groups B1 and B2 of size m/2. Then, the entry Xij is drawn

according to Bernoulli distribution with parameter min(pin2aibj, 1) if i, jð Þ 2
A1�B1 or i, jð Þ 2A2�B2 and parameter min(pout2aibj, 1) if i, jð Þ 2A1�B2

or i, jð Þ 2A1�B2 with pin¼ 1:4 and pout¼ 0:6. Intuitively, the farms from

A1 (resp.A2) preferentially grow crops from B1 (resp. B2), but the model also

allows the degree of the farm and of each crop to be heterogeneous inside the

blocks. As a consequence, this model, called degree-corrected, is neither a

LBMwith 2�2 blocks nor a configuration model but a blend of them. The

LBM estimation method recovers too many blocks (Fig. 11A) by grouping

farms or crops that are in the same group and have similar degrees. The

p-value for the configuration test is found to be smaller than 10�3. This is

corroborated by the fact that the scree plot exhibits an unusually large first

eigenvalue (Fig. 11B). Contrary to the previous example, this unusually
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Figure 10 Second example to illustrate the method for uncovering outliers through
principal component analysis: outlier. (A) The LBM representation, (B) the scree plot
of the PCA residuals, (C) the representation of the incidence matrix according to the
PCA ordering (Eq. 5) and (D) the boxplots of the PCA first coordinates.
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large singular value is not due to outliers (Fig. 11D) but to the presence of a

block structure. The PCA-based matrix representation highlights the pres-

ence of these two groups of farms and crops (Fig. 11C).

3.5 Measuring Originality of Farms’ Contributions Through
Diversity Measures

Wewill now focus our attention on the distribution of cultivated crop diver-

sity at the level of the sampled location (the village). As mentioned in pre-

vious sections, some farms may grow many more crops than others (hence,

the high variance in degree among farms in the bipartite network).

A question that remains unanswered is whether low-degree farms contribute

effectively more or less than high-degree farms to the overall cultivated

diversity—‘effectively more’ being understood as contributing more than

expected if crops were chosen randomly from the pool of crops cultivated

in the village. In other words, the question is nowwhether low-degree farms

cultivate the most frequent crops in the village only (common crops) or
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Figure 11 Third example to illustrate the method for uncovering outliers through prin-
cipal component analysis: blocks. (A) The LBM representation, (B) the scree plot of the
PCA residuals, (C) the representation of the incidence matrix according to the PCA
ordering (Eq. 5) and (D) the boxplots of the PCA first coordinates.
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contribute disproportionately to crop diversity by focusing only on crops

that are cultivated on very few farms (rare crops).

3.5.1 Theoretical Framework
Further expanding the notations introduced in Section 3.1, we denote pij the

weight associated with the interaction between farm i and crop j among all

interactions of farm i:

pij ¼Xij

Ci

(6)

The proportion of all the connections in the network that are due to farm i

or crop j are, respectively, noted qi and hj:

qi¼Ci

N
(7)

hj ¼ Fj

N
(8)

We note Hi the diversity of crops cultivated on farm i, as measured by

Shannon entropy:

Hi ¼�
X
j

pij log pij ¼ logCi (9)

The average diversity among farms, weighted by the importance qi of each

farm, is denoted Hα:

Hα¼
X
i

qiHi¼ 1

N

X
i

Ci logCi (10)

The diversity of crops cultivated by all farms, when taken together and

weighted by the importance qi of each farm, is noted HT and reads as:

HT ¼�
X
j

X
i

qipij

" #
log

X
i

qipij

" #
¼�

X
j

hj log hj

¼ logN � 1

N

X
j

Fj log Fj (11)

The difference betweenHT andHα is the turnover in diversity among farms

or β diversity, noted Hβ:
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Hβ ¼HT �Hα¼ logN � 1

N

X
j

Fj log Fj� 1

N

X
i

Ci logCi (12)

Hβ can be further decomposed into individual turnover components, HiT:

Hβ ¼
X
i

qiHiT (13)

where HiT measures the ‘originality’ of farm i portfolio of crops when com-

pared to the overall diversity of cultivated crops. An expression for HiT can

be found (Lande, 1996):

HiT ¼�
X
j

pij log
CiFj

N
(14)

3.5.2 Measuring the Diversity Cultivated by Crop–Poor
and Crop–Rich Farms

We now focus on measuring the evenness of crops cultivated by a subset I of

farms. More specifically, because we are interested in the subset of the most

crop–poor or crop–rich farms, we will assume that the set I contains all farms

belonging to a certain quantile of the distribution of Si. The evenness of

crops cultivated on farms in set I is noted EI and reads as

EI ¼�
X

j

X
i2I qi, I pij

h i
log

X
i2I qi, I pij

h i
log mð Þ ; qi, I ¼ CiX

i2ICi

: (15)

The evenness EI is the diversity of crops cultivated on all farms in set I

divided by the logarithm of the total number m of crops cultivated in the

village. It measures the equity of the distribution of crops cultivated on farms

in I.

In order to assess whether the evenness is greater in crop–rich farms than

crop–poor farms, we compare the value of ERich�EPoor to that of all real-

izations of the incidence matrix X under the configuration model (i.e. ran-

domizing connections given degree sequences for both crops and farms) by a

permutation test.

3.5.3 Measuring the Impact of Crop–Poor and Crop–Rich Farms
We now focus on measuring the β diversity Hβ,I due to the contribution

of a subset I of farms. As previously, the subset I is made up of the most
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crop–poor or crop–rich farms. We can give an explicit formula for Hβ,I

(Lande, 1996):

Hβ, I ¼
X
i2I

qiHiT ¼�
X
i

qi log qi +
1

N

X
j

X
i2IXij

h i
log

1

Fj

� �
(16)

The first term in the right-hand side of Eq. (16) relies on the expression of

the α diversity Hα,I due to farms in subset I:

Hα, I ¼ 1

N

X
i2I

Ci logCi ¼ σI logN

N
+
X
i2I

qi log qi (17)

where σI is the ‘volume’ of interactions due to farms belonging to subset I:

σI ¼
X
i2I

Ci (18)

The second term depends on the correlation between a crop degree Fj and

the number of farms within the set I who possess this crop, noted φj,I:

φj, I ¼
X
i2I

Xij (19)

Plugging Eqs. (17)–(19) into Eq. (16) yields the following expression

for Hβ,I:

Hβ,I ¼ σI logN

N
�Hα, I � 1

N

X
j

φj, I log Fj (20)

The quantity DI ¼ 1

N

X
j
φj, I logFj measures the deficit of originality dis-

playedby the farms in subset I that is due to their cultivationof ‘commoncrops’.

Again, we assess the significance of Hβ,I by a permutation test based on

the configuration model. As the set I contains all farms belonging to a certain

quantile of the distribution of Ci, all realizations of the incidence matrix X

under the configuration model preserve the set of Ci values to be found in I.

As a consequence, the quantity
σI logN

N
�Hα, I in the right-hand side of

Eq. (16) is invariant with respect to the configuration model. The quantity

DI in the right-hand side of Eq. (16), however, does not satisfy this invari-

ance. Thus, values of Hβ,I that are unusually large for the configuration

model mean that farms in subset I contribute more to cultivated biodiversity

than expected by the number of types cultivated on farms in I.
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3.5.4 Measuring Originality of Farms’ Contributions Through Diversity
Measures on Toy Examples

3.5.4.1 Simulation Model
Two groups of farms are considered: crop–rich (40% of farms) and crop–

poor (60% of farms). The crops are divided into two groups with same size:

rare and common, consistently with the definition provided at the beginning

of Section 3.5. The entries of the incidence matrix are generated as iid.

Bernoulli random variables with probability pij (corresponding to farm i

and crop j) given by:

logit pij
� �¼ μ+ α Lið Þ+ β Kj

� �
+ γ Li :Kj

� �
where logit is the function x 7! log x= 1�xð Þð Þ, Li indicates the group of

farm i, Kj the group of crop j and parameters μ, αs, βs, γs are:

α poorð Þ¼ β rareð Þ¼ γ poor, rareð Þ¼ γ rich, rareð Þ¼ γ poor, commonð Þ¼ 0

to ensure identifiability. The interaction term γ(rich, common) then drives

the respective contributions to diversity of crop–rich and crop–poor farms.

Indeed, if the value of this term is zero, the effect of being crop–rich for

growing a rare or a common variety will be the same.

3.5.4.2 Three Contrasted Toy Examples
Figures 12–14 correspond, respectively, to the three following settings:

Crops

F
ar

m
s

Rare

BA

Common

Poor Rich

Lo
gi

t(
pr

ob
ab

ili
tie

s)

−3

−2

−1

0

1

Figure 12 Toy example with equal contributions to diversity of crop–rich and crop–
poor farms. μ¼�3, α richð Þ¼ β commonð Þ¼ 1:5, γ rich, commonð Þ¼ 0.
(A) Probabilities that a crop is grown on a farm and (B) incidence matrix.
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1. Parameters fixed to μ¼�3, α richð Þ¼ β commonð Þ¼ 1:5,
γ rich, commonð Þ¼ 0. The crop–rich and crop–poor farms have the

same contribution to diversity with respect to their own crop richness.

This is ensured by setting the interaction term γ(rich, common) to 0.

2. Parameters fixed to μ¼�3, α richð Þ¼ β commonð Þ¼ γ rich, commonð Þ
¼ 1. The crop–poor farms have a greater contribution to diversity, since

they grow rare crops and common cropwith nearly the same probability,

whereas for crop–rich farms, the probability of growing rare crops is

clearly smaller than the probability of growing common crops.

Crops

F
ar

m
s

RichPoor

Lo
gi

t(
pr

ob
ab

ili
tie

s)

−3

−2

−1

0

1 Rare

BA

Common

Figure 13 Toy example with greater contribution to diversity of crop–poor farms.
μ¼�3, α richð Þ¼ β commonð Þ¼ rich, commonð Þ¼ 1. (A) Probabilities that a crop is
grown on a farm and (B) incidence matrix.

Crops

F
ar

m
s

RichPoor

A B

Lo
gi

t(
pr

ob
ab

ili
tie

s)

−3

−2

−1

0

1 Rare
Common

Figure 14 Toy example with greater contribution to diversity of crop–rich farms.
μ¼�3, α richð Þ¼�γ rich, commonð Þ¼ 1:5, β commonð Þ¼ 2. (A) Probabilities that a crop
is grown on a farm and (B) incidence matrix.
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3. Parameters fixed to μ¼�3, α richð Þ¼�γ rich, commonð Þ¼ 1:5,
β commonð Þ¼ 2.Thecrop–rich farmshaveagreater contribution todiver-

sity, as they exhibit the same ability of growing rare and common crops.

As shown in Figs. 12–14, these three settings are consistent with what a

crop–poor or a crop–rich farm and a rare or a common crop are expected

to be.

Results in Table 4 are coherent with the intuitive expectations based on

these three models. For the first case, nothing was found to contribute signif-

icantly to the distribution of crop diversity. For the two other cases, the tests

on evenness andon the contributions to diversity of crop–rich and crop–poor

farms agreed. Indeed, in the case of Fig. 13, for instance, the crop–rich farms

are found to contribute less than expected to diversity (null hypothesis

rejected on the left side), the crop–poor farms are found to contribute more

than expected to diversity (null hypothesis rejected on the right side) and the

difference of evenness is found to be significantly smaller than expected (null

hypothesis rejected on the left side). Based on these three toy examples, a

power study was conducted and its results are presented in Appendix.

4. PATTERNS OF LOCAL CROP DIVERSITY: RESULTS
OF THE META-ANALYSIS

All the aforementioned methods have been applied to the 50 datasets

of the meta-analysis. The results are summarized in Tables 5 and 6 for species

and infra-species diversity, respectively.

4.1 Variability of Farms’ and Crops’ Degrees
The aim of this section is to detect over-dispersion (significant test on the

right) or under-dispersion (significant test on the left) of degree distribution

for farms and crops, respectively, following the methodology introduced in

Section 3.2. Two null hypotheses (H0) are tested:

1. diversity at species and infra-species level is randomly distributed (i.e.

according to a binomial distribution) among farms from the same village

(homogeneity of the farm degrees) and

2. crop richness is randomly distributed within the same village (homoge-

neity of the crop degrees).

4.1.1 Species Diversity
For farms, H0 was rejected on the right side (16 times over the 18 tested

datasets) for the variability of farms’ degree (Table 5). There was only
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Table 4 p-Values for the Contribution Tests Applied to the Three Examples Presented in Figs. 12–14

Evenness Difference
Rich–Poor Farms

Significance
Crop–Rich Farms
Contribution

Significance
Crop–Poor Farms
Contribution

Significance

Left Right Left Right Left Right

Fig. 12 0.036 0.433 0.567 0.628 0.587 0.413 0.643 0.413 0.587

Fig. 13 �0.003 <0.001 >0.999 0.638 <0.001 >0.999 0.64 >0.999 <0.001

Fig. 14 0.036 0.989 0.011 0.715 0.996 0.004 0.809 0.004 0.996
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Table 5 Statistical Results Obtained for the 18 Datasets Dealing with Specific Diversity

Dataset

Variance
of Farms’
Degree

Significance Variance
of
Species’
Degree

Significance LBM
Farm
Cluster
Number

LBM
Species
Cluster
Number

Normalized
First
Singular
Value

Significance Evenness
Difference
Rich–Poor
Farms

Significance
Crop–Rich
Farms
Contribution

Significance
Crop–Poor
Farms
Contribution

Significance

Left Right Left Right Right Left Right Left Right Left Right

CL-M01 0.579 <0.001 NS 74.138 NS <0.001 1 3 0.49 NS 0.167 NS <0.001 2.187 NS <0.001 1.796 NS NS

CV-M01 1.843 NS <0.05 8.068 NS <0.001 2 2 2.21 <0.05 0.077 NS NS 3.054 NS NS 2.824 NS NS

EG-M05 7.708 NS <0.001 6.023 NS <0.001 2 3 1.07 NS 0.061 NS NS 3.751 NS NS 3.538 NS <0.05

EG-M08 10.207 NS <0.001 6.3 NS <0.001 3 3 0.98 NS 0.078 <0.01 NS 3.887 <0.05 NS 3.606 NS <0.001

OC-M02 6.471 NS <0.001 4.707 NS <0.001 2 2 4.7 <0.001 0.08 NS NS 4.429 NS NS 4.147 NS NS

OC-M04 8.353 NS <0.001 10.016 NS <0.001 3 3 4.05 <0.05 0.127 NS <0.001 4.361 NS <0.001 3.968 <0.001 NS

OC-M05 5.346 NS <0.001 6.285 NS <0.001 2 2 2.84 <0.01 0.094 NS NS 4.323 NS NS 4.059 NS NS

OC-M06 5.546 NS <0.001 5.205 NS <0.001 2 2 0.75 NS 0.102 NS NS 4.194 NS NS 3.859 NS NS

OC-M07 8.431 NS <0.001 4.31 NS <0.001 3 2 2.84 <0.01 0.174 NS <0.001 4.142 NS <0.001 3.668 <0.001 NS

OC-M09 16.755 NS <0.001 2.859 NS <0.001 2 2 0.17 NS 0.19 NS NS 4.131 NS NS 3.734 NS NS

OC-M10 13.601 NS <0.001 4.007 NS <0.001 2 2 1.03 NS 0.144 NS NS 4.157 NS NS 3.826 NS NS

OC-M11 5.801 NS <0.001 18.977 NS <0.001 2 4 3.54 <0.01 0.085 NS <0.001 4.583 NS <0.001 4.202 <0.001 NS

OC-M12 5.187 NS <0.001 4.529 NS <0.001 2 2 1.76 <0.05 0.077 NS <0.001 4.627 NS <0.001 4.31 <0.001 NS

OC-M13 10.607 NS <0.001 9.764 NS <0.001 3 3 2.28 <0.05 0.093 NS NS 4.602 NS NS 4.246 <0.05 NS

OC-M14 9.702 NS <0.001 6.367 NS <0.001 3 3 2.56 <0.01 0.081 NS NS 4.587 NS <0.05 4.266 NS NS

OC-M16 9.14 NS <0.001 6.513 NS <0.001 3 2 1.61 NS 0.11 NS NS 4.623 NS NS 4.219 NS NS

SC-M05 1.671 NS NS 9.74 NS <0.001 1 3 0.35 NS 0.11 NS NS 3.468 NS <0.001 3.112 NS NS

SC-M06 4.595 NS <0.001 3.662 NS <0.001 2 2 1.1 NS 0.066 NS NS 2.678 NS NS 2.471 NS NS

NS: non-significant, <0.05: p-values ranging from 0.01 to 0.05, <0.01: p-values ranging from 0.001 to 0.01 and <0.001: p-values lower than 0.001.
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Table 6 Statistical Results Obtained for the 33 Datasets Dealing with Infra-Specific Diversity

Dataset

Variance
of Farms’
Degree

Significance
Variance of
Landraces’
Degree

Significance LBM
Farm
Cluster
Number

LBM
Landraces
Cluster
Number

Normalized
First
Singular
Value

Significance Evenness
Difference
Rich–Poor
Farms

Significance
Crop–Rich
Farms’
Contribution

Significance
Crop–Poor
Farms’
Contribution

Significance

Left Right Left Right Right Left Right Left Right Left Right

AB-M02 1.485 NS NS 3.456 NS <0.001 1 2 0.82 NS 0.116 NS NS 2.951 NS NS 2.667 NS NS

CL-M02 0.338 <0.001 NS 33.193 NS <0.001 1 3 2.05 <0.05 0.057 NS NS 1.978 NS NS 1.913 NS NS

CV-M02 0.963 NS NS 5.731 NS <0.001 1 2 0.76 NS 0.138 NS NS 2.943 NS NS 2.545 <0.05 NS

DJ-M003a 1.191 NS NS 14.849 NS <0.001 1 3 0.5 NS 0.224 NS <0.05 0.449 NS NS 0.371 NS NS

DJ-M003b 1.207 NS NS 17.837 NS <0.001 1 3 0.69 NS 0.142 NS NS 0.649 NS NS 0.561 NS NS

DJ-M003c 1.164 NS NS 8.074 NS <0.001 1 2 0.03 NS 0.194 NS NS 0.564 NS NS 0.479 NS NS

DJ-M003d 0.751 NS NS 10.915 NS <0.001 1 2 0.43 NS 0.216 NS NS 0.497 NS NS 0.424 NS NS

DJ-M009a 0.995 NS NS 13.273 NS <0.001 1 2 0.68 NS 0.163 NS NS 0.385 NS NS 0.463 NS NS

DJ-M009b 1.033 NS NS 9.983 NS <0.001 1 2 0.66 NS 0.378 NS NS 0.585 NS NS 0.39 NS NS

DJ-M009c 0.966 NS NS 15.084 NS <0.001 1 2 1.6 NS 0.422 NS NS 0.648 NS NS 0.39 NS NS

DJ-M009d 0.975 NS NS 5.285 NS <0.001 1 2 0.57 NS 0.318 NS NS 0.337 NS NS 0.362 NS NS

DJ-M009e 0.848 NS NS 13.349 NS <0.001 1 2 0.33 NS 0.271 NS NS 0.468 NS NS 0.389 NS NS

DJ-M009f 1.349 NS NS 10.697 NS <0.001 1 2 0.07 NS 0.313 NS NS 0.596 NS NS 0.421 NS NS

DJ-M012a 0.656 <0.05 NS 16.079 NS <0.001 1 3 1.62 NS 0.124 NS <0.001 3.206 NS <0.001 2.794 NS NS

DJ-M012b 1.18 NS NS 6.892 NS <0.001 1 2 0.07 NS 0.086 NS <0.05 3.576 NS NS 3.468 NS NS

DJ-M015a 0.304 <0.001 NS 88.723 NS <0.001 1 3 0.81 NS 0.097 NS NS 2.035 NS NS 1.798 NS <0.05

DJ-M015b 0.542 <0.05 NS 9.976 NS <0.001 1 2 1.82 NS 0.099 NS NS 1.979 NS NS 1.744 NS NS

DJ-M018a 0.367 <0.001 NS 9.875 NS <0.001 1 2 3.95 <0.05 0.246 NS <0.001 2.354 NS <0.001 1.782 <0.001 NS

DJ-M018b 0.297 <0.001 NS 45.012 NS <0.001 1 3 3.82 <0.001 0.153 NS NS 1.883 NS NS 1.519 NS NS

DJ-M030 0.44 <0.001 NS 48.912 NS <0.001 1 3 3.92 <0.05 0.233 NS <0.001 1.62 NS NS 1.21 <0.01 NS

Continued
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Table 6 Statistical Results Obtained for the 33 Datasets Dealing with Infra-Specific Diversity—cont'd

Dataset

Variance
of Farms’
Degree

Significance
Variance of
Landraces’
Degree

Significance LBM
Farm
Cluster
Number

LBM
Landraces
Cluster
Number

Normalized
First
Singular
Value

Significance Evenness
Difference
Rich–Poor
Farms

Significance
Crop–Rich
Farms’
Contribution

Significance
Crop–Poor
Farms’
Contribution

Significance

Left Right Left Right Right Left Right Left Right Left Right

DJ-M036 0.637 <0.05 NS 13.24 NS <0.001 1 2 1.45 NS 0.198 NS <0.001 2.328 NS <0.05 1.84 <0.001 NS

DJ-M039a 0.928 NS NS 0.94 NS NS 1 1 0.25 NS 0.234 NS NS 2.236 NS NS 1.975 NS NS

DJ-M045b 0.205 <0.001 NS 0.736 NS NS 1 1 0.03 NS 0.08 NS NS 2.384 NS NS 2.321 NS NS

DJ-M045c 0.746 NS NS 0.491 NS NS 1 1 0.45 NS 0.211 NS NS 2.377 NS NS 2.221 NS NS

DJ-M045d 0.357 <0.05 NS 2.295 NS <0.05 1 1 0.8 NS 0.356 NS NS 2.099 NS NS 1.679 NS NS

JW-M07 0.853 NS NS 10.789 NS <0.001 1 3 0.51 NS 0.068 NS NS 2.644 <0.05 NS 2.465 NS NS

JW-M08 0.536 <0.01 NS 15.333 NS <0.001 1 4 0.74 NS 0.115 NS NS 2.663 NS NS 2.334 <0.05 NS

JW-M09 0.816 NS NS 15.148 NS <0.001 1 4 0.92 NS 0.043 NS NS 2.873 NS NS 2.736 NS NS

JW-M10 0.949 NS NS 5.73 NS <0.001 1 2 1.68 NS 0.053 NS NS 2.76 NS NS 2.587 NS NS

ME-M01 3.9 NS <0.001 7.395 NS <0.001 2 3 0.84 NS 0.112 NS NS 3.997 NS NS 3.649 NS NS

SC-M04 8.172 NS <0.001 3.842 NS <0.001 2 2 0.45 NS 0.099 NS NS 3.454 NS NS 3.216 NS NS

SC-M07 3.335 NS <0.001 2.998 NS <0.001 2 2 0.6 NS 0.126 NS NS 3.188 NS NS 3.021 NS <0.001

NS: non-significant, <0.05: p-values ranging from 0.01 to 0.05, <0.01: p-values ranging from 0.001 to 0.01 and <0.001: p-values lower than 0.001.
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one case where the test was not significant on both sides (SC-M05) and one

case where the test was rejected on the left side (CL-M01). These results

indicate that the number of species grown per farm from the same village

is generally over-dispersed, with few farms growing more species than

expected. For the variability in degree of species, this pattern was even stron-

ger, with a systematically over-dispersed degree distribution.

4.1.2 Infra-Species Diversity
For farms at the infra-specific level, the pattern is completely different as H0

is rejected on the right side only 3 times over the 32 tested datasets (ME-

M01, SC-M04 and SC-M07), and 11 times on the left side (Table 4). These

results indicate an under-dispersion of the degree distribution when we con-

sider the distribution of landraces at the village scale. For degree of landraces,

H0 is mostly rejected on the right side with 29 times over the 32 datasets,

indicating, as for the species level, an over-dispersion of the degree

distribution.

4.2 Structure Detection Through Model-Based
Clustering (LBM)

In this section, we seek to detect the existence of patterns within inventory

datasets at the village scale using LBM as explained in Section 3.3.

4.2.1 Species Diversity
The clustering method applied to the different datasets detected from one to

three clusters for the farms and from two to three clusters for the species

(Table 5 and Fig. A1). These results are similar to the toy example illustrated

in Fig. 7. Therefore, the clustering seems mostly driven by the heterogeneity

in degree of both farms and species. Farms were clustered together because

they grow almost the same species. In the case of two clusters for farms, we

then define the ‘crop–poor’ farm cluster as the one with the lower density

and the ‘crop–rich’ farm cluster as the one with the higher density. In the

case of two groups for the species, we define the ‘rare species’ cluster as

the one with the lower number of links and the frequent species cluster

as the one with the higher number of links.

4.2.2 Infra-Species Diversity
The clustering method detected from one to two clusters for the farms and

from one to four clusters for landraces (Table 6 and Figs. A2 and A3). For

four datasets (DJ-M039a, DJ-M045b, DJ-M045c and DJ-M045d), only one
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cluster was detected both for farms and landraces (Table 4). These results of

low clustering are consistent with the low variability of the degrees both for

the farms and the landraces observed in Section 4.1. Similarly, 26 additional

datasets with under-dispersion had only one block for the farms. These find-

ings indicate that for landrace diversity, a lower heterogeneity is generally

observed among farms where nearly the same landraces are grown. Only

three datasets showed two blocks for the farms (ME-M01, SC-M04 and

SC-M07). Nevertheless, it is still possible to distinguish between frequent

and rarer landraces.

4.3 Outlier Detection Through PCA
We then applied a PCA to detect farms that are ‘outliers’ in terms of species

and infra-species diversity. See Section 3.4 for methodological details.

4.3.1 Species Diversity
Using the test introduced in Section 3.4.3, H0 was rejected 9 times over the

18 datasets at α¼0.05, highlighting the existence of outliers. These outliers

are generally two or three farms per dataset (Fig. A4), which can be charac-

terized as farms where a different subset of species is grow compared to other

farms with an equivalent degree, belonging to the same cluster.

4.3.2 Infra-Species Diversity
H0 was rejected for 4 datasets over the 32 datasets (CL-M02, DJ-M018a,

DJ-M018b and DJ-M030, Fig. A5). These results indicate that in addition

to growing almost the same number of landraces, the same portfolio of land-

races is grown globally by all farms from the same village. Note that for these

four datasets, only one cluster was detected with the LBM (CL-M02,

DJ-M018a, DJ-M018b and DJ-M030). Therefore, in this case, we have

farms with a particular subset of landraces and having an equivalent degree.

4.4 Farms’ Contributions to Local Diversity
In the analyses reported in this section, farms were separated into ‘crop–rich’

farms and ‘crop–poor’ farms according to their degree in such a way that

arbitrarily 40% of farms were classified as ‘crop–rich’. The method described

below is not highly sensitive to this threshold value, except for extreme

values.

Evenness (E) and contribution (Hβ) were computed for each of these two

groups as explained in Section 3.5.
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4.4.1 Species Diversity
The tests on the difference between Erich and Epoor revealed that crop–rich

farms had a significantly higher evenness in five cases (CL-M01, OC-M04,

OC-M07, OC-M11 and OC-M12). The group of crop–poor farms

contributed significantly more than that of crop–rich farms in only one case

(EG-M08). H0 was not rejected in the other cases, indicating that no signif-

icant difference in terms of contribution to the global diversity by the crop–

rich group of farms compared to the crop–poor group.

Our findings on the difference between Erich and Epoor converge with

the test of the contributions of crop–rich and crop–poor farms. Indeed,

in five cases when the first test was significant on the right side (i.e. a signif-

icantly higher contribution to the global diversity by the crop–rich farms

than the crop–poor farms), we observed that some crop–rich groups did

indeed contribute significantly to the global diversity and that some

crop–poor groups contributed significantly less than expected in four of

the five cases (Table 5). Two additional datasets showed a significant con-

tribution of the crop–rich farms (OC-M14 and SC-M05) and one additional

dataset showed that the crop–poor farms contributed significantly less than

expected (OC-M13). The crop–poor farms contributed significantly more

than expected in only two cases. In one of these cases (EG-M05), the result is

consistent with that of the test on evenness. In the other case (EG-M08),

crop–poor farms only showed a significant contribution to global diversity

and not to evenness (EG-M08).

4.4.2 Infra-Species Diversity
The tests of the difference between Erich and Epoor farms revealed that

crop–rich farms had a significantly higher evenness in six cases (Table 6;

DJ-M003a, DJ-M012a, DJ-M012b, DJ-M018a, DJ-M030 and DJ-M036).

H0 was not rejected in the other cases, indicating no significant difference

in evenness between crop–rich and crop–poor farms. These results were

not always convergent with the results of the tests on the contributions of

the crop–rich and crop–poor farm groups to diversity at the village level.

These latter tests gave convergent results (a significant contribution of a

few crop–rich farms to the global diversity) in only two cases (DJ-M018a

and DJ-M036) of the six in which the evenness difference was significant.

In one additional dataset, few farms from the crop–rich group contributed

significantly less than expected (JW-M07). In one additional dataset,

the crop–poor farms contributed significantly more than expected

(DJ-M012a). In three additional datasets, few farms from the crop–poor
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group contributed significantly less than expected (CV-M02, DJ-M030 and

JW-M08). Finally, in two datasets, the crop–poor farms contributed

significantly more than expected (DJ-M0015a and SC-M07).

5. DISCUSSION

5.1 Contrasted Patterns of Local Crop Diversity
at the Species and Infra-Species Levels

Applying a set of network-based methods to a meta-dataset of crop diversity

reveals distinct sources of heterogeneity in terms of crop distribution at the

local scale:

i. crop diversity among farms is generally more heterogeneous at the spe-

cific level than at the infra-specific level;

ii. heterogeneity in farms’ degrees is one explanation for this heterogene-

ity, with blocks of low-diversity farms and of high-diversity farms (the

same pattern is observed for species and landraces, with blocks of com-

mon crops and blocks of rarer crops);

iii. outlier farms with unusual portfolios are another source of

heterogeneity and

iv. both low-diversity or high-diversity farms can contribute dispropor-

tionately to local diversity by growing rare varieties.

We suggest two main explanations for these general results: heterogeneity in

data collection methods and diversity of socio-ecological and environmental

contexts. As datasets were collected following different protocols, differ-

ences in sampling effort could have an influence on the observed diversity

(Perrault-Archambault and Coomes, 2008). An additional source of hetero-

geneity exists specially at the infra-specific level in the way in which land-

races are named and how they are grouped together when they show strong

evidence of being the same biocultural object. Nevertheless, a subset of the

datasets for landraces were collected in the context of a coordinated global

partnership of researchers in order to use a standardized protocol and the

same sampling strategy during data collection ( Jarvis et al., 2008), and

datasets collected in this context also show different patterns (Table 6:

DJ-M012a, DJ-M012b, DJ-M015a, DJ-M015b, DJ-M018a, DJ-M018b,

DJ-M030, DJ-M036, DJ-M039a, DJ-M045b, DJ-M045c and DJ-M045d).

Consequently, variation in the agro-ecological and the socio-cultural

contexts, and interactions therein, is likely to have strongly shaped the dis-

tribution of local crop diversity.
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More specifically, our findings of over-dispersion of the degrees at the

specific level and of under-dispersion at the infra-specific level are strength-

ened by the results of classification using LBM. Indeed, in the cases of over-

dispersion, two or three blocks of farms are detected whereas for cases of

under-dispersion, only one block of farms is detected. Convergence of

the results between these two approaches indicates that the variability of

the degree distribution is probably the main driver of block structure. It thus

makes sense to use as null model a configuration model, controlling for

degree, because this would allow assessment of whether other structural

drivers, in addition to the degree, act to shape the patterns of diversity. From

an ethnobiological or agro-ecological point of view, the block detection

means that farms can be distinguished according to the level of diversity they

grow. We identify high-diversity and low-diversity farms. Similarly, for

crops, we identify common species/landrace (present in fields of most farms)

and rare species/landraces (grown on few farms). Such patterns in terms of

distribution of local crop diversity are quite common in the literature and

consistent with the findings of Jarvis et al. (2008), who found that growing

area and landrace diversity are related, and similar to those of Zimmerer

(1991) for the distribution of potato biodiversity in Andean Peru.

From an ethnobiological point of view, our findings reflect the differing

ways of managing specific (crop species) and infra-specific crop diversity

(landraces). Growing numerous species is more complicated than growing

numerous landraces, for several reasons. First, each species has its specific

needs in terms of soil quality and preparation, sowing date, quantity of

labour required and when it is required (Garine and Raimond, 2005).

Among landraces of the same species, these needs are not so divergent.

Farmers possessing a relatively large land area have more chance to encoun-

ter different soil types and quality among their fields. Also, larger farms or

those with an extensive social network can expect to have an adequate

labour supply (Abizaid et al., 2015) to grow a large portfolio of species

(Garine and Raimond, 2005). Thus, farmers with more assets, including

social capital and labour, tend to cultivate larger and more numerous fields

and have greater crop diversity (Alvarez et al., 2005; Coomes and Ban, 2004;

Zimmerer, 1991). Smallholder poverty may limit the diversity of crops that

can be raised. Previous studies concluded that certain species are needed to

meet basic needs (e.g. food, medicinal, etc.) and other species are more

optional, reflected by higher levels of infra-specific diversity for staples com-

pared to other crops ( Jarvis et al., 2008), especially under stressful abiotic

conditions (Labeyrie et al., 2013). Another possible explanation of the lower
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heterogeneity for degrees for landraces is that several landraces of the main

species may be grown to fill diverse needs driven by cultural and dietary pref-

erences, shifts in market demand and labour availability (Brush and Meng,

1998; Gauchan et al., 2005; Johns et al., 2013), heterogeneity in soil and

water resources (Bellon and Taylor, 1993; Bisht et al., 2007), biotic stresses

(Finckh and Wolfe, 2006) and the need to enhance pollination levels via

outcrossing (Kremen et al., 2002). Much infra-specific diversity is held at

the community level rather than within individual farms (Brush et al.,

2015; Mulumba et al., 2012). In addition, in agroecosystems where many

species are grown, farms maintaining collections of landraces will be few

because less varietal diversity of the crop species is available to the farmer

due to financial, social or policy constraints. Finally, the reason for a greater

heterogeneity of crop diversity at the specific level compared to the infra-

specific level may lie in the traits of the crop species considered in the analysis

and their reproductive systems. In their broad comparison of nomenclature

systems, Jarvis et al. (2008) showed that farmers use more detailed classifica-

tions for clonally reproduced crops than for self-fertilizing, partially

self-fertilizing or outcrossing crops. This pattern was confirmed in our

dataset. The only cases where over-distribution of farm degree was observed

at the infra-specific level (ME-M01, SC-M04 and SC-M07) were all villages

in which the staple food was provided by clonally propagated species (man-

ioc and taro).

We applied additional tests to detect more detailed patterns in crop

diversity within the meta-dataset and the sources of divergence in terms

of crop portfolio composition. Our analysis of outliers identified certain

farms that held unique portfolios of species or landraces. In most cases, it

is the high-diversity farms that mainly contribute to the global diversity.

These findings are consistent with the hypothesis of nestedness and of

sink–source dynamics described in Alvarez et al. (2005) and Coomes

(2010), and frequently postulated to be important, in the dynamics of local

diversity, of one or a small number of experts or nodal farmers in a village

(Boster, 1983; Kawa et al., 2013; Padoch and Jong, 1991; Peroni and

Hanazaki, 2002; Perrault-Archambault and Coomes, 2008; Salick et al.,

1997; Subedi et al., 2003; Tapia, 2000).

Nevertheless, it would be incorrect to say that this is a consistent ten-

dency in the meta-dataset. Indeed, we observed the opposite relationship

in other datasets whereby low-diversity farms contributed significantly to

the local diversity (EG-M05, EG-M08, DJ-M015a and SC-M07). In some

cases, one or a few farmers grew rarer species or landraces due to curiosity,
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for aesthetic reasons, or to maintain a social status of expert at the local level

(Elias et al., 2000; Hawkes, 1983; Meilleur, 1998), or to have an object that

others do not have (Coomes and Ban, 2004). Possessing a rare species or

landrace might, for instance, allow a young farmer to distinguish himself

from others to develop niche market (rare vegetables and tobacco) or for

other non-economic reasons. Possessing an object that others do not could

increase its potential transfer value to other members of the community

(Caillon and Lanouguère-Bruneau, 2005). Additional factors influence

the distribution of local crop diversity, for instance, the role played by dif-

ferences associated with gender and generation, access to seed markets,

farmers’ food preferences and the market value of crops. Patterns of vertical

transmission of seeds frommother-in-law to daughter-in-law (Delêtre et al.,

2011; Labeyrie et al., 2013) or from father/mother-in-law to son-in-law

(Wencélius and Garine, 2015) in patrilinear societies with virilocal rules

of residence, i.e., where the son and his wife (wives) stay in the same village

of the son’s father, generation after generation, may constitute another

source of divergence in crop diversity among families from the same village.

Considering now the village unit as a complex system, patterns of crop

distribution at both the species and landrace levels are shaped by the self-

organized action of the farmers, resulting from the sum of individual choices.

This behaviour can be interpreted as a ‘collective knowledge’ that maintains

crop diversity, to cope with multiple environmental and socio-cultural con-

straints and perturbations, and to maintain cultural cohesion through seed

circulation (Emperaire and Peroni, 2007). These self-organized distributions

of crop diversity are vulnerable, depending on their pattern and the type of

perturbation. For instance, maintenance of crop diversity may be threatened

if local crop diversity is concentrated in a few crop–rich farms, should a disas-

ter happen. Local farmer populations can be expected to be more vulnerable

to outbreaks and rapid spread of pests or pathogens when crop–rich and

crop–poor farms from the same village both grow common species (used

as staple food) or common landraces. Therefore, cultivating both common

and rare landraces on the same farm increases farms’ resilience in case of

major pests affecting the most common landraces.

These multiple patterns of crop diversity raise particular concern about

the issues around the conservation of crop diversity. By detecting how local

diversity is distributed, our methods could help scientists involved in ex situ

and in situ conservation programs to optimize their sampling strategies

for plant collection and farmers involvement, respectively. In addition to the

statisticalmethods developed in this chapter, LBMandPCAare visualizations

303Patterns of Local Crop Biodiversity

ARTICLE IN PRESS



derived from network data, and may serve as useful tools in communicate

information about the distribution of crop diversity at the local scale

with NGOs, politicians, farmers and all the stakeholders interested by crop

management, as suggested by Pocock et al. (2015).

More generally, because these distinct patterns of crop diversity have

been detected in different agro-ecological environments and socio-cultural

contexts without controlling for other potential factors (and without addi-

tional information about each village), it is not yet possible to assess how one

particular agro-ecological environment and socio-cultural context shapes

the distribution of local crop diversity. Additional studies are needed in this

direction to detect the local drivers influencing the observed distribution of

crop diversity by collecting data to characterize specific and infra-specific

diversity of crop plants and socio-cultural diversity of farmers. Such inves-

tigations will help us in understanding trade-offs between ecological and

socio-cultural functions within agroecosystems.

5.2 Relevance of Network-Based Methods
The network-based methods introduced in this chapter provide a set of use-

ful tools to analyse the distribution of local diversity in crop species and vari-

eties. Indeed, our framework allowed us to answer four key questions:

1. Are farm and crop degrees more variable than expected under a null

model which assumes a homogeneous probability of interaction

between potential partners?

2. Are crop-by-farm interactions structured by blocks and, if so, what are

the characteristics of these blocks?

3. Are certain crops or certain farms obvious outliers in their pattern of

interactions?

4. Do crop–poor (low-degree) and crop–rich (high-degree) farms contrib-

ute significantly more or less than expected, based solely on knowledge

of their crop–richness (degrees), to the overall diversity of crops culti-

vated locally?

By combining these different indices, tests and metrics, we provide a realistic

and complete picture of the complex structure of crop diversity. This frame-

work readily detected cases, for example, in which crop diversity is different

in two different villages (through the LBMs) and identified farms—be they

low-degree or high-degree farms—as unique and important providers of

crop diversity (through uncovering of outliers in PCA and measures of

uniqueness).
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One strength of this framework is the use of a hierarchy of null models of

increasing complexity. For instance, the simplest model for a bipartite net-

work with variable degrees is the Erdős-Rényi G(N,p) model in which

interaction between nodes from the two different categories is restricted

(each link has the same probability of occurring). Deviations from this null

model allow assessment of degree heterogeneity or the presence of blocks

(groups of farms that preferentially cultivate a certain group of species).

When looking for more elaborate structures in the network (and not only

in degree distributions), we relied on the configuration model, which ran-

domizes interactions while keeping all degrees in the network constant.

Consequently, one can disentangle whether the observed patterns, such

as the block structure, are simply explained by the degree heterogeneity

or are truly emergent properties. Furthermore, the above approaches

(LBMs and PCA) provide visualizationmethods of the network highlighting

its different characteristics, e.g., modules or outliers. These graphical repre-

sentations are complementary to the more usual network representations

reviewed in Pocock et al. (2015). It is important to note that our

network-based approach can foster transdisciplinarity as it can be extended

to datasets from other disciplines, including ecology, to detect particular pat-

terns in bipartite networks (Mulder et al., 2015), especially with the out-

come of next-generation sequencing techniques (Vacher et al., 2015). In

ecology, the tests could efficiently supplement metrics that are routinely

used, such as modularity or nestedness scores (Fortuna et al., 2010).

Depending on the size of the dataset, LBMs can be as informative as tradi-

tional modularity-computing techniques (or even more informative) in

finding underlying structures within bipartite datasets (Leger, 2015). More-

over, LBMs can also elucidate non-modular blocks, such as quasi-partite

structures (i.e. when such structures are not exactly bi- or multi-partite

but quite close to one of those) within a network. Of course, the power

of all such methods depends heavily on the number of nodes in the network,

but the application to ecological questions of the set of methods proposed

here could readily generate much more informative descriptions of ecolog-

ical networks than connectance, modularity and nestedness scores alone.

The approach used in this chapter does not rely on a direct estimation of

nestedness, because the different methods available to compute nestedness

do not converge (Fig. A6). However, the set of methods designed here

to uncover the uniqueness of contributions to diversity of crop–rich and

crop–poor farms actually provide complementary information on whether

specialists interact preferentially with generalists, as assumed under a ‘nested’
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scenario in ecology, or not.We thus suggest that this toolkit could be used as

an alternative to the classical methods for detecting nestedness that are usu-

ally applied to ecological datasets (Podani and Schmera, 2012). For future

use, the code is available at the following URL: http://netseed.cesab.org/.

From a methodological point of view, the configuration model must be

accompanied by several caveats. Most prominently, the fact that the degrees

of all nodes are constant makes the model highly constrained. Chung and Lu

(2002a,b) developed a model that generated graphs with given expected

degrees, relaxing the requirement that all samples of the model reproduce

exactly the observed degrees. Degrees of networks sampled from this model

are allowed to vary slightly around a fixed expected value. Interestingly, the

Chung-Lu model has recently been extended into the so-called degree-

corrected stochastic block model (Karrer and Newman, 2011) incorporating

both degree-heterogeneity parameters as in the Chung-Lu model and a

block structure as in the LBM. Such models would allow disentangling

the farms’ overall crop richness, as well as crop rarity, from the preferences

of certain farms for specific groups of crops (block structure). Inference

methods for this model have been developed recently (e.g. Lei and

Rinaldo, 2014). However, the complexity of these models makes the esti-

mation (and the computation of p-values) unreliable for small networks such

as those considered in this study. Nevertheless, the Chung-Lu model and

degree-correcting stochastic block models are promising directions for

research on larger-scale ecological networks.

6. CONCLUSION

In this chapter, we develop new network-based indicators and statis-

tical tests to characterize patterns of crop diversity at local scales. We applied

this methodological framework to a meta-dataset from 10 countries con-

taining inventory data at the specific or infra-specific level. Our results iden-

tify different sources of heterogeneity in local crop diversity:

i. diversity at the specific level is generally much more heterogeneous

among farms compared to diversity at the infra-specific level;

ii. two or more groups of farms can be identified based on their unique

crop richness and

306 Mathieu Thomas et al.

ARTICLE IN PRESS

http://netseed.cesab.org/
http://netseed.cesab.org/


iii. although diversity–rich farms often contribute most to global diversity,

in some cases diversity–poor farms contribute equally with rare species

and varieties.

This analysis reveals the absence of any general pattern of crop diversity

distribution at the village level, indicating a strong dependence on agro-

ecological and socio-cultural contexts. These results suggest that local com-

munities adapt self-organized strategies to their growing contexts. Further

empirical investigations are needed to disentangle the different drivers shap-

ing crop diversity distribution, more particularly comparing the impacts of

biological properties of crops (open-pollinated vs. self-pollinated crop, seed

vs. cuttings, annual vs. perennial, etc.), of social organization of farmers

(patrilinearity vs. matrilinearity, local community vs. community of prac-

tices), of agricultural policy and of diversity of ecological landscapes (open

vs. closed systems). Our methodological framework provides a useful

approach and an informative overview of patterns in the distribution of

diversity. The toolkit developed and applied in this study offers an alterna-

tive approach to the classical methods of detecting nestedness, in both eth-

nographic and ecological datasets. More broadly, this methodological

framework—which helps to detect patterns of crop distribution within local

social organizations—enables the investigation of trade-offs between eco-

logical and social functions of agroecosystems within a same analytical

framework.
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National de la Recherche Agronomique (INRA) and the Centre National de la

Recherche Scientifique (CNRS). We are most grateful to the NETSEED researchers not

directly included in the preparation of this chapter for the fruitful discussions in which

they participated during the project’s different meetings.

307Patterns of Local Crop Biodiversity

ARTICLE IN PRESS



APPENDIX. LBM Representation
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Figure A1 Representation of the incidence matrix for the 18 datasets collected at the
specific level. The left panel corresponds to the original matrix without reordering, the
right panel corresponds to the reordering based on block detection using the LBM
method and density of the graph. The higher density is always on the top left side
of the matrix.
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Figure A2 Representation of the incidence matrix for the 32 datasets collected at the
infra-specific level. The left panel corresponds to the original matrix without reordering,
the right panel corresponds to the reordering based on block detection using the LBM
method and density of the graph. The higher density is always on the top left side of the
matrix. Part 1.
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Figure A3 Representation of the incidence matrix for the 32 datasets collected at the
infra-specific level. The left panel corresponds to the original matrix without reordering,
the right panel corresponds to the reordering based on block detection using the LBM
method and density of the graph. The higher density is always on the top left side of the
matrix. Part 2.
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Outlier Representation
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Figure A4 Representation of the PCA residuals on the nine datasets that yielded signif-
icant results at the specific level.
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Statistical Power Study of the Test Measuring the Impact
of Crop–Rich and Crop–Poor Farms
The same model as in Section 3.5.4 is used for studying the behaviour of this

test, introduced in Section 3.5.2. The three different settings of parameters

correspond to an edge density of approximately 0.18. Thousand incidence

matrices were simulated in each of the three settings with different incidence

matrix sizes: n¼20, 50 and m¼20, 50.
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Figure A5 Representation of the PCA residuals on the four datasets that gave signifi-
cant results at the infra-specific level.
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Table A1 Estimated Probabilities of Rejection of the Null Hypothesis (in %) for the
Different Contribution Tests Under the Three Toy Models for Two Alpha Levels, 1% and
5%, When: (a) n¼50,m¼50, (b) n¼50,m¼20, (c) n¼20,m¼50 and (d) n¼20,m¼20

Fig. 12 Fig. 13 Fig. 14

Alpha Level 1.00% 5.00% 1.00% 5.00% 1.00% 5.00%

(a)

E.diff.pvalue.L 0.3 4.1 71 89.5 0.1 0.3

E.diff.pvalue.R 0.4 5.5 0 0 41 64.2

Hbeta.rich.pvalue.L 0.3 4.2 79.2 94.7 0.1 0.3

Hbeta.rich.pvalue.R 0.7 4.9 0 0 39.7 63.6

Hbeta.poor.pvalue.L 0.7 4.9 0 0 39.7 63.6

Hbeta.poor.pvalue.R 0.3 4.2 79.2 94.7 0.1 0.3

(b)

E.diff.pvalue.L 0.9 4.9 17.2 38.2 0.09 2.6

E.diff.pvalue.R 0.1 5.5 0 0 4.7 14.1

Hbeta.rich.pvalue.L 1.3 4.7 20.3 43.3 0.9 3.1

Hbeta.rich.pvalue.R 0.5 5.3 0 0 5.3 14.8

Hbeta.poor.pvalue.L 0.5 5.3 0 0 5.3 14.8

Hbeta.poor.pvalue.R 1.3 4.7 20.3 43.3 0.9 3.1

(c)

E.diff.pvalue.L 0.9 6.1 16.8 40 0.3 0.5

E.diff.pvalue.R 1.4 5.7 0 0.2 12.3 29.8

Hbeta.rich.pvalue.L 1.3 6 26.7 52.5 0.3 0.6

Hbeta.rich.pvalue.R 1.1 5.6 0 0 12.3 28.9

Hbeta.poor.pvalue.L 1.1 5.6 0 0 12.3 28.9

Hbeta.poor.pvalue.R 1.3 6 26.7 52.5 0.3 0.6

(d)

E.diff.pvalue.L 0.7 4.6 5.5 19.1 0.9 3.8

E.diff.pvalue.R 1.1 4.6 0 1.4 2.5 7.7

Hbeta.rich.pvalue.L 0.8 4.6 8.4 22.8 0.7 3.8

Hbeta.rich.pvalue.R 0.8 5.5 0 1.3 2.1 7.4

Hbeta.poor.pvalue.L 0.8 5.3 0 1.3 2.1 7.4

Hbeta.poor.pvalue.R 0.8 4.6 8.5 23.2 0.7 3.8
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Table A1 depicts the proportion of rejection (in %) as a function of inci-

dence matrix size when the α-level is set to 1% and 5%. In Settings 2 and 3

(alternative hypothesis), the rejection probability exhibits the same pattern.

When there are only n¼20 farms or m¼20 crops, the power is quite low,

whereas for larger matrices (n¼m¼50), the power is greatly increased.

Under the first setting without interaction between richness of the farms

and the status of crops, the p-values are nearly uniformly distributed on

[0,1]. These simulations confirm that our test is able to detect contrasted

contribution to the diversity by ‘crop–rich’ and ‘crop–poor’ farms as long

as the sample size is large enough.

Estimation of Nestedness
This section describes the nestedness results obtained on the meta-dataset

using two methods: the temperature (Rodrı́guez-Gironés and Santamarı́a,

2006) and the NODF (Almeida-Neto et al., 2008). Figure A6 represents

the p-values computed for each estimator after re-sampling using the con-

figuration model introduced in Section 3.4.1. Our results are consistent with

those of Podani and Schmera (2012), because for the samemeta-dataset, tests

performed with one or the other index were inconsistent.
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Figure A6 Plot representing on the x-axis the NODF p-values computed by re-sampling
and on the y-axis the temperature p-values computed by re-sampling. In both cases,
re-sampling was performed using the configuration model: (a) for datasets collected
at the specific level and (b) for datasets collected at the infra-specific level.
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GLOSSARY
Network a set of interconnected actors (human or non-human) and formally modelled by a

graph.

Bipartite network a network whose nodes can be partitioned into two disjoint subsets (F to

represent the farm andC to represent the crop: species/landraces) such that no edge con-

nects two nodes from F or two nodes from C.

Node synonymouswith ‘vertex’. A node is the fundamental unit ofwhich graphs are formed.

Edge an edge is a link between two nodes. Every edge has two endpoints in the sets of nodes.

In the particular case of bipartite networks, the two endpoints belong to two disjoint

subsets of nodes, e.g., farms (F) and crops (C, species or landraces). The presence of

an edge indicates that the considered crop is cultivated on the considered farm.

Interaction network a network of nodes that are connected by features. In a crop-by-farm

interaction network, crops are cultivated by farmers who are members of the farm.

Nestedness this concept, for which different indices have been devised, aims at quantifying

the extent to which nodes of one subset (e.g. F) with low degrees are linked to nodes of

the other subset (e.g. C) with high degrees. In the example of crop-by-farm networks,

indices of nestedness aim to measure to what extent ‘crop–poor’ farms grow a subset of

the crops cultivated on ‘crop–rich’ farms.

Degree the number of edges incident to a vertex. A farm’s degree is the number of crops

cultivated on the considered farm.

Configuration model a random graph model with a prescribed degree sequence. All

graphs with this degree sequence obtained by permutation are equiprobable in this model

(for details, see Section 3.4.1).

Graph a mathematical concept defined by a finite set of nodes (vertices) connected by edges

(links).

Randomgraphmodel a generative model of graphs where the set of nodes is deterministic

and the edges are drawn according to some probability distribution.

Erdős-Rényi model a random graph model in which all the edges are drawn indepen-

dently with the same probability p.

Latent-block model a random graph model that assumes that the nodes belong to

(unobserved) blocks and that the probability of connection between two nodes depends

only on the blocks they belong to. This block structure can be estimated, allowing the

clustering of nodes (farms or crops) based on similarities in terms of connectivity prop-

erties (see Section 3.3).

Incidence matrix 0/1 matrix A. Its rows are indexed by the set of farms F and its columns

are indexed by the set of cropsC. The entryAij equals one if and only if crop j is cultivated

by farmers on farm i (see Section 3.1).
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120–121, 129–148.

Chung, F., Lu, L., 2002a. The average distances in random graphs with given expected
degrees. Proc. Natl. Acad. Sci. U.S.A. 99, 15879–15882.

Chung, F., Lu, L., 2002b. Connected components in random graphs with given expected
degree sequences. Ann. Comb. 6, 125–145.

Connor, E.F., Simberloff, D., 1979. The assembly of species communities: chance or com-
petition? Ecology 60, 1132–1140.

Coomes, O.T., 2010. Of stakes, stems, and cuttings: the importance of local seed systems in
traditional Amazonian societies. Prof. Geogr. 62, 323–334.

Coomes, O.T., Ban, N., 2004. Cultivated plant species diversity in home gardens of an Ama-
zonian peasant village in Northeastern Peru. Econ. Bot. 58, 420–434.

Crowder, D.W., Northfield, T.D., Strand, M.R., Snyder, W.E., 2010. Organic agriculture
promotes evenness and natural pest control. Nature 466, 109–112.

317Patterns of Local Crop Biodiversity

ARTICLE IN PRESS

http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0015
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0015
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0015
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0015
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0020
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0020
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0020
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0025
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0025
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0030
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0030
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0035
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0035
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0035
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0040
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0040
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0045
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0045
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0045
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0050
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0050
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0050
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0055
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0055
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0055
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0060
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0060
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0065
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0065
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0070
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0070
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0075
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0075
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0080
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0080
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0085
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0085
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0085
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0090
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0090
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0095
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0095
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0100
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0100
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0105
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0105
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0110
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0110
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0115
http://refhub.elsevier.com/S0065-2504(15)00031-8/rf0115


Delêtre, M., McKey, D.B., Hodkinson, T., 2011. Marriage exchanges, seed exchanges, and
the dynamics of manioc diversity. Proc. Natl. Acad. Sci. U.S.A. 108, 18249–18254.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38.

Di Falco, S., Perrings, C., 2005. Crop biodiversity, risk management and the implications of
agricultural assistance. Ecol. Econ. 55, 459–466.

Diamond, J., 2002. Evolution, consequences and future of plant and animal domestication.
Nature 418, 700–707.

Drinkwater, L.E., Wagoner, P., Sarrantonio, M., 1998. Legume-based cropping systems
have reduced carbon and nitrogen losses. Nature 396, 262–265.

Elias, M., Rival, L., Mckey, D., 2000. Perception and management of cassava (Manihot
esculenta Crantz) diversity among Makushi Amerindians of Guyana (South America).
J. Ethnobiol. 20, 239–265.

Emperaire, L., Peroni, N., 2007. Traditional management of agrobiodiversity in Brazil: a case
study of manioc. Hum. Ecol. 35, 761–768.

Finckh, M.R., Wolfe, M.S., 2006. Diversification strategies. In: Cooke, B.M., Jones, D.,
Gareth, B.K. (Eds.), The Epidemiology of Plant Diseases. Springer, Netherlands,
pp. 269–307.

Fortuna, M.A., Stouffer, D.B., Olesen, J.M., Jordano, P., Mouillot, D., Krasnov, B.R.,
Poulin, R., Bascompte, J., 2010. Nestedness versus modularity in ecological networks:
two sides of the same coin? J. Anim. Ecol. 79, 811–817.

Fraser, J., Alves-Pereira, A., Junqueira, A., Peroni, N., Clement, C., 2012. Convergent adap-
tations: bitter manioc cultivation systems in fertile anthropogenic dark earths and flood-
plain soils in Central Amazonia. PLoS One 7, e43636.

Garine, E., Raimond, C., 2005. La culture intensive fait-elle disparaı̂tre la biodiversité?
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