G. Dupont¹ N. Blondel^{1,2} S. Berthoin¹ # Time Spent at VO₂max: a Methodological Issue #### **Abstract** This study was designed to propose a standardised procedure to determine the time spent at $\dot{V}O_2$ max ($t\dot{V}O_2$ max) based on the $\dot{V}O_2$ max of the day (i.e. the $\dot{V}O_2$ max value measured the day of the test). Ten male subjects first performed a graded field test, followed by a continuous running exercise to exhaustion, at the velocity of the Université de Montréal Track Test (V_{UMTT}) plus 1 km × h⁻¹ (V_{UMTT} + 1). The second test consisted of an exhaustive run at 100% of V_{UMTT} , followed by a V_{UMTT} + 1 test. Different methods were used to compare time spent at $\dot{V}O_2$ max, based on the $\dot{V}O_2$ max of the graded field test, and time spent at $\dot{V}O_2$ max, based on the $\dot{V}O_2$ max of the day, during an exhaustive run at 100% of V_{UMTT} . Results have shown that V_{UMTT} + 1 tests were of sufficient intensity and duration to identify the $\dot{V}O_2$ max of the day. Time spent at $\dot{V}O_2$ max ranged from 25 ± 53 s to 139 ± 76 s according to the method used. However, the $t\dot{V}O_2$ max method based on the sum of each value higher than 95% of $\dot{V}O_2$ max of the day appeared more robust than methods based on the time to exhaustion minus time to reach $\dot{V}O_2$ reference value, or the method based on the sum of values higher than $\dot{V}O_2$ max minus $2.1 \text{ ml} \times \text{kg}^{-1} \times \text{min}^{-1}$. #### **Key words** Field tests · maximal oxygen uptake · time to exhaustion # Introduction Numerous studies have focused on the improvements in maximal oxygen uptake ($\dot{V}O_2$ max) through training [7,17]. The improvements in $\dot{V}O_2$ max are generally explained by the fact that exercise allows subjects to reach and to maintain a high level of $\dot{V}O_2$. Wenger and Bell [18] suggested that the maximal gains in aerobic power were elicited by exercise intensities ranging from 90 to 100% of $\dot{V}O_2$ max. Based on these studies, several authors [3–5] have characterised exercises to determine the velocity that allows $\dot{V}O_2$ max to be sustained for the longest time ($\dot{V}O_2$ max), hypothesising that the higher the stimulus of $\dot{V}O_2$, the greater the improvement. $\dot{V}O_2$ max has been measured during continuous exercise [3,8,9] but also during intermittent exercise [4–6]. However, protocols for data collection to calculate $t\dot{V}O_2$ -max differed between studies and the results are not comparable due to differences in protocols. For Billat et al. [3–5], the calculation of $t\dot{V}O_2$ max is equal to the sum of $\dot{V}O_2$ values superior or equal to the $\dot{V}O_2$ max measured during the graded test minus 2.1 ml × kg⁻¹ × min⁻¹. This calculation seems inconsistent, as a 2.1 ml × kg⁻¹ × min⁻¹ value does not represent the same percentage of $\dot{V}O_2$ max in subjects with different maximal aerobic power (e.g. 5.3% of $\dot{V}O_2$ max for a subject with a $\dot{V}O_2$ max equal to 40 ml × kg⁻¹ × min⁻¹ versus 3% for a subject with a 70 ml × kg⁻¹ × min⁻¹ $\dot{V}O_2$ max). To avoid this bias, both Hill and Rowell [8] and Hill et al. [9] proposed the calculation of $t\dot{V}O_2$ max by calculating time spent above 95% of $\dot{V}O_2$ max. For these authors, $t\dot{V}O_2$ max represented the difference between the time to ex- #### Affiliation # Correspondence S. Berthoin · Laboratoire d'Etudes de la Motricité Humaine · Faculté des Sciences du Sport et de l'Education Physique · 9, rue de l'Université · 59790 Ronchin · France · Phone: (33) 320 88 73 66 · Fax: (33) 320 88 73 63 · E-Mail: berthoin@hp.sc-univ-lille2.fr Accepted after revision: November 15, 2002 #### Bibliography ¹ Laboratoire d'Etudes de la Motricité Humaine, Faculté des Sciences du Sport et de l'Education Physique, Université de Lille 2, France ² Laboratoire d'Analyses Multidisciplinaires des Pratiques Sportives, UFR-STAPS, Université d'Artois, France haustion (TTE) and time to reach 95% of VO₂max (time at which VO₂ started to plateau). For this calculation the authors hypothesised that when subjects reached VO2max, they maintained it until exhaustion. However, for highly trained males, Perrey et al. [16] observed a significant decrease in $\dot{V}O_2$ before exhaustion. This implies that some subjects would not maintain $\dot{V}O_2$ max until exhaustion. It appears more consistent to assume that the $t\dot{V}O_2$ max corresponds to the sum of $\dot{V}O_2$ values (not TTE minus time to reach $\dot{V}O_2$ max) that are superior or equal to 95% of the reference value for $\dot{V}O_2$ max. In addition, in these studies [3 – 5,8,9], the $t\dot{V}O_2$ max was calculated from $\dot{V}O_2$ max values from the graded test performed previously. However, Katch et al. [11] reported ± 5.6% day-to-day biological variations in VO₂max. That could explain why Billat et al. [4] found that, for same exercise, certain subjects did not reach VO₂max, while others maintained it for a long time. Therefore, it may be necessary to identify the $\dot{V}O_2$ max of the day (i.e. the highest $\dot{V}O_2$ that a subject can reach the day of a test) to calculate the tVO₂max more accurately. Our study was designed to propose a standardised procedure to calculate the tVO₂max for an exercise to exhaustion at 100% of the Université de Montréal Track Test velocity (V_{UMTT}). This test was chosen because it is the exercise form which has been studied the most. It was hypothesised that an exercise at V_{UMTT}+ $1 \text{ km} \times \text{h}^{-1}$ allows the VO_2 max to be elicited. The calculation of the tVO₂max based on this procedure will be compared with the tVO₂max calculated using the procedures provided by Billat et al. [3-5], Hill and Rowell [8] or Hill et al. [9], and a method based on the sum of each value included between VO₂max and 95% of $\dot{V}O_2$ max. We hypothesised that $\dot{V}O_2$ max depends on the methods used. A standard procedure to calculate tVO₂max will be proposed. #### **Material and Methods** # **Subjects** Ten physical education students volunteered to participate in this study and gave their written informed consent in accordance with the guidelines of the Lille (France) consultative committee for the protection of individuals in biomedical research. Their age, body mass and height were 20.8 ± 2.1 years, 74.4 ± 8.9 kg and 1.81 ± 0.08 m, respectively. # Overview Subjects performed 4 field tests. First they performed a graded field test to determine maximal oxygen uptake (VO2max) and the Université de Montréal Track Test velocity (V_{IIMTT}; [13]). The second test, performed twenty one minutes after the graded field test, consisted in running for as long as possible at a velocity equal to V_{UMTT} plus 1 km × h⁻¹ (V_{UMTT} + 1_{GRAD}). After resting for at least 48 h, and 1 week at most, subjects performed a 3rd test consisting of a continuous run until exhaustion at a velocity corresponding to 100% of V_{UMTT} (TTE₁₀₀). Twenty-one minutes after the TTE₁₀₀, a continuous test at V_{UMTT} plus 1 km × h^{-1} (V_{UMTT} + 1_{TTE}) was performed. Before entering the study, the subjects were familiarised with the exercise procedures and the analysers. All the tests were carried out in an indoor-stadium on a 200-m track marked with red cones every 25 m (inside the first lane), while green cones were set 2 m behind the red ones. For all tests the velocity was imposed with a tape recording, which indicated, by means of a brief sound, the moment when the subjects had to pass a red cone to maintain a constant speed. At each sound, the subjects had to be within 2 m of the red cones. The speed of the sound track was checked before each test. During all tests, subjects were verbally encouraged to run until exhaustion. The test ended with the volitional exhaustion of the subject or when he was unable to run at the selected velocity, i.e. when he was behind a green cone three consecutive times. #### **Graded test and continuous tests** The V_{UMTT} was determined from a graded field test [13]. The velocity at the first stage was set at $10 \, \text{km} \times \text{h}^{-1}$ and was increased by $1 \, \text{km} \times \text{h}^{-1}$ per stage of $2 \, \text{min}$. The velocity at the last completed stage, increased by $0.5 \, \text{km} \times \text{h}^{-1}$ if the subject was able to run a half stage, was retained as the V_{UMTT} . This method is in agreement with previous publications [1,2,12] demonstrating that increments of $1 \, \text{km} \times \text{h}^{-1}$ every $2 \, \text{min}$ (or $0.5 \, \text{km} \times \text{h}^{-1}$ every minute or $1.5 \, \text{km} \times \text{h}^{-1}$ every $3 \, \text{min}$) provide an accurate estimation of the velocity associated with $\dot{V}O_2 \text{max}$ ($v\dot{V}O_2 \text{max}$). The TTE₁₀₀ consisted of a continuous run until exhaustion at a velocity corresponding to 100% of V_{UMTT} . This test was preceded by a standardised warm-up, which consisted of running at $10 \, \text{km} \times \text{h}^{-1}$ for 10 min and performing stretching exercises for 4 min. For this test, the TTE was measured at the nearest second. The V_{UMTT} + 1 tests consisted of a continuous run until exhaustion at a velocity corresponding to V_{UMTT} + 1 km × h⁻¹. For these tests, the subjects were asked to run as long as possible and to maintain the imposed velocity for at least 2 min. The V_{UMTT} + 1 $_{GRAD}$ and V_{UMTT} + 1 $_{TTE}$ were carried out 21min after the graded field test and TTE₁₀₀, respectively. During the 21-min period, the subjects recovered passively for 15 min, warmed up for 5 min by running at $10 \, \text{km} \times \text{h}^{-1}$, and recovered for 1 min before the V_{UMTT} + 1 began. The V_{UMTT} + 1 I_{GRAD} was expected to be of sufficient intensity and duration to allow subjects to reach $\dot{V}O_2$ max (in comparison with $\dot{V}O_2$ max measured during the graded field test). The V_{UMTT} + 1 I_{TTE} was carried out in order to determine the $\dot{V}O_2$ max the day of the TTE₁₀₀. # Determination of $\dot{V}O_2$ max, $\dot{V}O_2$ peak and $\dot{V}O_2$ max of the day During all the tests, respiratory gas exchanges were measured breath-by-breath using a portable system (Cosmed K4b², Rome, Italy) in order to determine ventilation (VE), oxygen uptake ($\dot{V}O_2$) and carbon dioxide production (VCO₂). This analyser has previously been validated over a wide range of exercise intensities [14]. Before each test, the O_2 and CO_2 analysis systems were calibrated using ambient air and a gas of known O_2 and CO_2 concentrations. The calibration of the K4b² turbine flowmeter was performed using a 3-l syringe (Quinton Instruments, Seattle, Wash., USA). The cardio-respiratory values were averaged on a 15-s period. Heart rate (HR) was continuously monitored (Polar Electro, Kempele, Finland). The $\dot{V}O_2$ max corresponded to the highest $\dot{V}O_2$ attained in two successive 15-s periods for the graded field test. It was judged that subjects had reached their $\dot{V}O_2$ max when 3 or more of the following criteria were met: 1) a plateau in $\dot{V}O_2$ despite increasing running speed; 2) a final respiratory exchange ratio (RER) higher than 1.1; 3) visible subject exhaustion; 4) a HR within Table 1 Methods used for the determination of time spent at VO₂max for the running time to exhaustion at 100% of the Université de Montréal Track Test velocity | | \dot{VO}_2 max used as the reference point | Measurement method | |---|---|---| | Billat et al. [3 – 5] | VO₂max in graded test | ¹ ऐO₂max minus 2.1 ml × kg⁻¹ × min⁻¹ | | Hill and Rowell [8] or
Hill et al. [9] | \dot{VO}_2 max in graded test | 2 Time to exhaustion minus time to reach 100% of \dot{VO}_2 max 3 Time to exhaustion minus time to reach 95% of \dot{VO}_2 max | | Present study | VO₂max in graded test | ⁴ 95% of VO₂max | | Present study | ൎVO₂peak in V _{UMTT} + 1 _{TTE} test | 5 VO ₂ peak minus 2.1 ml × kg $^{-1}$ × min $^{-1}$ 6 Time to exhaustion minus time to reach 100% of $\dot{\text{VO}}_{2}$ peak 7 Time to exhaustion minus time to reach 95% of $\dot{\text{VO}}_{2}$ peak 8 95% of $\dot{\text{VO}}_{2}$ peak | V_{UMTT} : Université de Montréal Track Test velocity; V_{UMTT} + 1_{TTE} : continuous run at the Université de Montréal Track Test velocity plus 1 km × h⁻¹; $\dot{V}O_2$ max: maximal oxygen uptake (graded field test); $\dot{V}O_2$ peak: peak oxygen uptake (V_{UMTT} + 1_{TTE}). the 10 bpm of predicted maximum; 5) a lactate concentration higher than 9 mmol \times l⁻¹. For the continuous tests (V_{UMTT} + 1_{GRAD} , TTE_{100} and V_{UMTT} + 1_{TTE}), the VO₂peak corresponded to the highest VO₂ attained in two successive 15-s periods. Both V_{UMTT}+1 tests were performed in order to determine the $\dot{V}O_2$ max of the day, independent of technological errors attributable to gas analysers and intra-individual chronobiological variations. It was assumed that the measured $\dot{V}O_2$ peak corresponded to the $\dot{V}O_2$ max of the day if the duration of these tests was longer than 2 min. According to Morgan et al. [15], an exercise at a velocity slightly higher than vVO₂max was assumed to be of sufficient intensity to allow the subjects to reach VO₂max if the duration of the test was at least 2 min. In addition, the $\dot{V}O_2$ peak values of the V_{UMTT} + 1_{GRAD} and V_{UMTT} + 1_{TTE} were retained as the $\dot{V}O_2$ max of day if they were higher than 94.4% of the VO₂max determined during the graded test. As reported by Katch et al. [11], the intra-individual day-today variability in $\dot{V}O_2$ max was within $\pm 5.6\%$. #### **Determination of lactate concentrations** Fingertip blood samples were obtained 3 min after each test. Lactate concentrations ([La]) were determined by a spectrophotometric method (Dr Lange, Berlin, Germany), which had previously been validated [10]. The accuracy of the analyser was checked before each test using standard solutions in lactate concentration. # Determination of time spent at VO₂max Time spent at $\dot{V}O_2$ max ($\dot{t}\dot{V}O_2$ max) was measured for the TTE₁₀₀ according to the 8 different methods described in Table **1**. The first four methods were based on the $\dot{V}O_2$ max attained for the graded field test, and the four following methods were based on the $\dot{V}O_2$ peak of \dot{V} ## **Statistical procedures** Data are presented for each subject. Means and standard deviations (mean \pm SD) were calculated for each parameter analysed. Coefficients of variation (CV) were calculated for each method of tVO₂max determination. A repeated analysis of variance (ANOVA) with Tukey's post-hoc test was used to compare the tVO₂max calculated according to the different methods and the maximal values for VO₂, HR, RER and VE between the different tests. The Student's t-test was used to compare the time to exhaustion between the two V_{UMTT}+1 tests. Regression analysis was used to examine the relationship between \dot{V} O₂max and \dot{V} O₂peak of the V_{UMTT}+1_{GRAD}, and between \dot{V} O₂max based on the \dot{V} O₂max of the graded field-test and \dot{V} O₂max based on \dot{V} O₂peak of V_{UMTT}+1_{TTE}. The p < 0.05 level was accepted as being significant for all tests. # Results For the graded field test, all subjects satisfied the maximal criteria defined for the attainment of $\dot{V}O_2$ max. The V_{UMTT} , TTE and maximal values for $\dot{V}O_2$ ($\dot{V}O_2$ max and $\dot{V}O_2$ peak) determined during the graded field test and TTE₁₀₀ tests are presented in Table **2**. The ANOVA revealed no significant differences between $\dot{V}O_2$ max and $\dot{V}O_2$ peak measurements. The results of the ANOVA indicated no significant difference between maximal values for VE, RER, HR (Table **3**) measured for the 4 tests. Blood lactate concentration measured after the graded field test was not significantly different from that of the TTE₁₀₀ (Table **3**). The correlation between the $\dot{V}O_2$ peak measured for V_{UMTT} + V_{LRAD} and V_{LRAD} and the $\dot{V}O_2$ max measured for the graded field test was significant (r = 0.99, p < 0.001; Fig. **1**). The time to exhaustion was not significantly different between V_{UMTT} + V_{LRAD} and V_{UMTT} + V_{LRAD} and V_{LRAD} + The $t\dot{V}O_2$ max calculated according to the different methods is presented in Table **4**. The ANOVA detected significant differences (p < 0.001) among the 8 methods. The $t\dot{V}O_2$ max values ranged between 24.5 ± 53.3 s for method ⁶ (Hill et al.'s method based on TTE minus time to reach 100% of peak of V_{UMTT} + 1_{TTE}) and 138.8 ± 76 s for method ³ (Hill et al.'s method based on TTE minus time to reach 95% of $\dot{V}O_2$ max of the graded field-test). For each method, the relationship between $t\dot{V}O_2$ max based on $\dot{V}O_2$ max of the graded field test and $t\dot{V}O_2$ max based on $\dot{V}O_2$ peak of the Table **2** Performances, $\dot{V}O_2$ max and $\dot{V}O_2$ peak values for the 4 tests | Subjects | Graded
V _{UMTT}
(km × h ⁻¹) | d test
VO ₂ max
(ml × kg ⁻¹ × min ⁻¹) | V _{UMT}
TTE
(s) | _T + 1 _{GRAD}
VO ₂ peak
(ml × kg ⁻¹ × min ⁻¹) | TTE ₁₀₀
TTE
(s) | VO₂peak
(ml × kg-1 × min-1) | V _{UM}
TTE
(s) | _{tt} + 1 _{ttE}
VO₂peak
(ml × kg ⁻¹ × min ⁻¹) | |---------------|--|---|--------------------------------|--|----------------------------------|--------------------------------|-------------------------------|---| | 1 | 17 | 60.0 | 185 | 59.8 | 450 | 56.0 | 234 | 57.3 | | 2 | 16 | 55.3 | 165 | 55.8 | 355 | 55.4 | 170 | 57.4 | | 3 | 18 | 59.8 | 138 | 59.1 | 306 | 58.6 | 200 | 59.8 | | 4 | 16 | 52.7 | 270 | 51.7 | 360 | 52.1 | 180 | 52.2 | | 5 | 17 | 64.9 | 240 | 64.4 | 302 | 63.8 | 208 | 64.4 | | 6 | 17 | 59.0 | 165 | 57.5 | 365 | 58.5 | 122 | 56.8 | | 7 | 19 | 56.3 | 149 | 58.0 | 333 | 57.7 | 181 | 59.2 | | 8 | 18 | 61.5 | 188 | 62.2 | 335 | 60.6 | 212 | 61.6 | | 9 | 18 | 51.6 | 152 | 52.7 | 232 | 54.2 | 130 | 54.3 | | 10 | 19 | 72.0 | 180 | 72.3 | 465 | 73.2 | 208 | 72.9 | | Means
± SD | 17.5
± 1.1 | 59.3
± 6.0 | 183.2
±41.7 | 59.4
±6.0 | 350.3
±68.5 | 59.0
±6.0 | 184.5
± 36.0 | 59.6
± 5.8 | V_{UMTT} : Université de Montréal Track Test velocity; TTE₁₀₀: time to exhaustion at 100% of V_{UMTT} ; V_{UMTT} +1: continuous run at the Université de Montréal Track Test velocity plus 1 km × h⁻¹; $\dot{V}O_{2}$ max: maximal oxygen uptake (graded field-test); $\dot{V}O_{2}$ peak: peak oxygen uptake (V_{UMTT} +1). Table 3 Maximal values for lactate concentrations, ventilation, respiratory exchange ratio and heart rate measured during the different tests | Subjects | s
[La]
(mmol×I ⁻¹) | Graded fie
VE
(I×min ⁻¹) | ld-test
RER | HR
(bpm) | VE
(I×min ⁻¹) | V _{UMTT} +
RER | 1 _{GRAD}
HR
(bpm) | [La]
(mmol×l ⁻¹) | TTE ₁₀₀
VE
(I×min ⁻¹) | RER | HR
(bpm) | VE
(I×min ⁻¹ | V _{UMTT} +
RER
) | 1 _{TTE}
HR
(bpm) | |--------------|--------------------------------------|--|----------------|---------------|------------------------------|----------------------------|----------------------------------|---------------------------------|--|---------------|---------------|----------------------------|---------------------------------|---------------------------------| | 1 | 12.5 | 114 | 1.19 | 205 | 110 | 1.14 | 196 | 11.9 | 110 | 1.12 | 196 | 114 | 1.12 | 198 | | 2 | 10.6 | 128 | 1.11 | 188 | 122 | 1.14 | 189 | 10.7 | 121 | 1.17 | 190 | 118 | 1.12 | 189 | | 3 | 15.7 | 151 | 1.18 | 195 | 149 | 1.10 | 193 | 13.3 | 156 | 1.13 | 193 | 164 | 1.14 | 191 | | 4 | 13.8 | 136 | 1.15 | 186 | 125 | 1.13 | 185 | 13.7 | 131 | 1.12 | 184 | 128 | 1.10 | 185 | | 5 | 14.0 | 166 | 1.17 | 189 | 174 | 1.18 | 185 | 17.5 | 158 | 1.19 | 187 | 164 | 1.16 | 186 | | 6 | 10.4 | 119 | 1.09 | 186 | 153 | 1.13 | 185 | 10.3 | 157 | 1.13 | 185 | 160 | 1.10 | 185 | | 7 | 10.9 | 147 | 1.14 | 179 | 140 | 1.12 | 177 | 10.6 | 130 | 1.14 | 176 | 139 | 1.12 | 172 | | 8 | 12.7 | 127 | 1.16 | 189 | 128 | 1.13 | 188 | 14.0 | 123 | 1.17 | 187 | 122 | 1.13 | 187 | | 9 | 12.1 | 142 | 1.18 | 179 | 132 | 1.21 | 177 | 10.6 | 130 | 1.16 | 174 | 126 | 1.13 | 172 | | 10 | 9.3 | 131 | 1.19 | 178 | 129 | 1.18 | 178 | 9.9 | 136 | 1.13 | 186 | 133 | 1.20 | 183 | | Means
±SD | 12.2
±2.0 | 136
±16 | 1.16
± 0.03 | 187.4
±8.2 | 136
± 18 | 1.15
±0.03 | 185.3
± 6.6 | 12.4
± 2.5 ^{ns} | 135
±17 | 1.15
±0.02 | 185.8
±6.8 | 137
± 19 ^{ns} | 1.13
± 0.03 ⁿ | 184.8
s ± 7.9ns | ns: no significant differences from other tests (p > 0.05). V_{UMTT}+ 1: continuous run at the Université de Montréal Track Test velocity plus 1 km × h⁻¹; TTE₁₀₀: time to exhaustion at 100% of V_{UMTT}; ([La]): lactate concentration; VE: maximal ventilation; RER: maximal respiratory exchange ratio; HR: maximal heart rate. Fig. 1 Relationship between $\dot{V}O_2$ max measured for the graded field test and $\dot{V}O_2$ peak measured for the V_{UMTT} + 1_{GRAD} . V_{UMTT}^{+} 1_{TTE} is presented in Fig. **2**. Significant correlations were found for Hill et al.'s method (3 , 7 , method based on TTE minus 95% of $\dot{V}O_2$ max) and for the method proposed in the present study (4 , 8 , method based on the sum of each value higher than 95% of $\dot{V}O_2$ max). Fig. **3** shows the $\dot{V}O_2$ plot of one subject for the graded fieldtest, V_{UMTT} + 1_{GRAD} , TTE_{100} and V_{UMTT} + 1_{TTE} tests. # Discussion This study was designed to propose a standardised procedure to calculate $t\dot{V}O_2$ max using the $\dot{V}O_2$ max value of the day as a reference point. The first hypothesis was that a test performed until exhaustion at V_{UMTT} + 1 km × h⁻¹ was of sufficient intensity and duration to elicit $\dot{V}O_2$ max. This point was verified as the $\dot{V}O_2$ peak measured at the end of this V_{UMTT} + 1 GRAD test was not significantly different from the $\dot{V}O_2$ max measured during the graded test. This point was also verified when the $\dot{V}O_2$ peak was measured Fig. **2** Relationship for each method between $t\dot{V}O_2$ max based on $\dot{V}O_2$ max of the graded field test and $t\dot{V}O_2$ max based on $\dot{V}O_2$ peak measured for the V_{UMTT} + 1_{TTE} . Table 4 Time spent at VO₂max according to the 8 methods for the time to exhaustion at 100% of the Université de Montréal Track Test velocity (V_{UMTT}) | Subjects | Methods based on \dot{VO}_2 max of graded field-test | | | | Methods based on $\dot{V}O_2$ peak of V_{UMTT} + 1 _{TTE} 5 | | | | | |-----------------|--|-----------------|--------------------|-----------------|---|------------------------|--------------------|------------------|--| | | (s) | | 1 | 0 | 0 | 0 | 0 | 45 | 0 | 105 | 60 | | | 2 | 60 | 100 | 145 | 90 | 15 | 0 | 100 | 45 | | | 3 | 15 | 0 | 126 | 120 | 15 | 0 | 126 | 120 | | | 4 | 150 | 0 | 180 | 180 | 180 | 0 | 180 | 180 | | | 5 | 30 | 0 | 47 | 30 | 30 | 0 | 47 | 30 | | | 6 | 30 | 0 | 125 | 75 | 180 | 95 | 215 | 195 | | | 7 | 105 | 183 | 258 | 75 | 60 | 0 | 183 | 75 | | | 8 | 45 | 0 | 125 | 90 | 45 | 0 | 125 | 90 | | | 9 | 120 | 127 | 157 | 120 | 75 | 0 | 127 | 105 | | | 10 | 105 | 150 | 225 | 150 | 45 | 150 | 165 | 150 | | | Means ± SD | 66.0 ± 50.6 | 56.0 ± 75.1 | 138.8 ± 76.0 | 93.0 ± 53.3 | 69.0 ± 61.3 | 24.5 ± 53.3 | 137.3 ± 49.1 | 105.0 ± 56.1 | | | CV (%) | 76.6 | 134.1 | 54.7 | 57.3 | 88.9 | 217.4 | 35.8 | 53.4 | | | Different from: | 3*,7* | 3**,7** | 1*,2**,
5*,6*** | 6* | 3*,7* | 3***, 4*,
7***, 8** | 1*.2**,
5*,6*** | 6** | | $^{^{1}}$, 5 : Billat et al.'s method (values higher than 1 O₂max minus 2.1 ml × kg⁻¹ × min⁻¹); 2 , 6 : Hill et al.'s method (TTE minus time to reach 100% of 1 O₂max); 3 , 7 : Hill et al.'s method (TTE minus time to reach 95% of 1 O₂max); 4 , 8 : method of the present study (values higher than 95% of 1 O₂max). during the V_{UMTT} + 1_{TTE} . Thus, the V_{UMTT} + 1 test allowed the $\dot{V}O_{2}$ -max of the day to be determined (i.e. the value for $\dot{V}O_{2}$ used as a reference to calculate $t\dot{V}O_{2}$ max). The second hypothesis was that $t\dot{V}O_{2}$ max depends on the method used. Our results confirm this hypothesis as significant differences between $t\dot{V}O_{2}$ max calculation methods were found. # Determination of the VO₂max of the day Repeated measurements of $\dot{V}O_2$ max for the same subject are characterised by day-to-day variations. Katch et al. [11] reported a $\pm 5.6\%$ day-to-day intra-individual variation in $\dot{V}O_2$ max, due to biological variations (more than 90%) and technological errors (less than 10%). When calculating $\dot{t}\dot{V}O_2$ max, a small difference ^{*:} significantly different with p < 0.05; **: significantly different with p < 0.01; ***: significantly different with p < 0.001. Fig. **3** An example of the $\dot{V}O_2$ versus time relationship for the graded field test, V_{UMTT} + 1_{GRAD} , TTE_{100} and V_{UMTT} + 1_{TTE} for the same subject. in VO₂max could induce a large variation in tVO₂max. For example, consider a subject with a $\dot{V}O_2$ max of 50 ml × kg⁻¹ × min⁻¹ measured during a graded test. If on the day of a TTE₁₀₀, for technical or biological reasons, the subject is only able to reach a $\dot{V}O_2$ max of 48 ml × kg⁻¹ × min⁻¹ (i.e. a 4% error), the $t\dot{V}O_2$ max would be nil. Conversely, if the measured maximal value is 52 ml × kg⁻¹ \times min⁻¹, a long t $\dot{V}O_2$ max would be found. To avoid such errors, it appears necessary to identify the $\dot{V}O_2$ max of the day, which has to serve as a reference value to accurately calculate the $t\dot{V}O_2$ max. In the present study, a simplified procedure was proposed to determine VO₂max of the day. To reach this goal, a test was proposed, following the graded field test. After a standardised recovery period, it consisted of running as long as possible at a velocity equal to V_{UMTT} + 1 km × h⁻¹. This exercise was performed after the graded field test to verify that the V_{UMTT} + 1 km \times h⁻¹ test allowed subjects to reach $\dot{V}O_2$ max. The maximal values for $\dot{V}O_2$ obtained during the graded test $(59.3 \pm 6.0 \text{ ml} \times \text{kg}^{-1} \times \text{min}^{-1})$ were not significantly different from the VO2peak obtained during the $V_{\text{UMTT}} + 1_{\text{GRAD}} (59.4 \pm 6.0 \text{ ml} \times \text{kg}^{-1} \times \text{min}^{-1})$ and were significantly correlated ($r^2 = 0.97$, p < 0.001). The mean duration of the V_{UMTT} + 1_{GRAD} was 183.2 ± 41.7 s. According to Morgan et al. [15], this exercise duration (more than 2 min), at a velocity higher than vVO₂max (V_{UMTT} in the present study), can allow subjects to reach $\dot{V}O_2$ max. Consequently, the V_{UMTT} + 1_{GRAD} appears to be an appropriate form of exercise to determine the $\dot{V}O_2$ max of the day. This test could take into consideration the day-to-day variability of a subject's VO₂max measurement. The $\dot{V}O_2$ peaks measured during the V_{UMTT} + 1_{TTE} were not significantly different from the $\dot{V}O_2$ max measured during the graded field test, nor from $\dot{V}O_2$ peak measured during the TTE_{100} . For each subject, the $\dot{V}O_2$ peak measured during the V_{UMTT} + 1_{TTE} was at least equal to 94.4% of $\dot{V}O_2$ max. In addition, the mean time to exhaustion was $184.5 \pm 36 \, \mathrm{s}$ with no subject having a running time lower than 2 min. This result suggests that all the subjects reached their $\dot{V}O_2$ max for the V_{UMTT} + 1_{TTE} . # Time spent at VO₂max When $t\dot{V}O_2$ max was calculated based on the $\dot{V}O_2$ max value measured during the graded field test, our results were in agree- ment with previously published data. For a TTE₁₀₀, Hill and Rowell [8] found a t $\dot{V}O_2$ max of 56 ± 48 s for the method based on 100% of $\dot{V}O_2$ max of the graded test (56 ± 75 s in the present study) and 140 ± 46 s for the method based on 95% of $\dot{V}O_2$ max of the graded test (139 ± 76 s in the present study). Conversely, despite similar TTE (333 ± 116 s for Billat et al. [3] and 350 ± 69 s in the present study), Billat et al. [3] found a $t\dot{V}O_2$ max of 190 ± 87 s, which was longer than our results (66 ± 51 s). The difference in a $t\dot{V}O_2$ max may result from a difference in the warmup procedure. In the present study, the TTE₁₀₀ began after a 1-min rest period. In the study by Billat et al. [3], the TTE₁₀₀ began immediately after a run at 60% of $v\dot{V}O_2$ max that could reduce the time to reach $\dot{V}O_2$ max, and increase $t\dot{V}O_2$ max. In the present study, tVO₂max was calculated from the VO₂max of the graded field test and from the $\dot{V}O_2$ peak of the V_{UMTT} + 1_{TTE} . To estimate the sensitivity of the method used to calculate tVO₂₋ max, the relationships between tVO2max based on VO2max (graded field-test) and tVO₂max based on VO₂max of the day $(\dot{V}O_2peak \text{ of } V_{UMTT} + 1_{TTE})$ were calculated. It was assumed that the stronger the relationship was, the lower the sensitivity of the method to variation in $\dot{V}O_2$ max was. For the method based on $\dot{V}O_2$ max minus 2.1 ml × kg⁻¹ × min⁻¹ (Table **1** [¹, ⁵]) and 100% of $\dot{V}O_2$ max [2, 6], no relationships were found (Fig. 2). Significant correlations were found between tVO2max when the measurements were based on 95% of VO2max of the graded field test (Table 1 [3 and 4]) and 95% of the $\dot{V}O_2$ max of the day (Table 1 [7 and 8]). These results indicate that these methodologies are more robust and attenuate the effects of small variations in VO₂max measurement. Consequently, it seems preferable to use a range of $\dot{V}O_2$ (95% of $\dot{V}O_2$ max) to measure $\dot{V}O_2$ max and obtain a more reproducible measurement. # Reference method to calculate tVO₂max Our results suggested measuring $t\dot{V}O_2$ max based on 95% of $\dot{V}O_2$ max. A consequence of this calculation is a reduction of the interindividual variations in $t\dot{V}O_2$ max (Table 4). The coefficients of variation calculated according to these calculations were lower than those based on other methods. Moreover, inter-individual variations were further reduced when the calculation was based on the $\dot{V}O_2$ max of the day. This could be partly explained by the fact that, with such a calculation, the range of the subjects' $\dot{t}\dot{V}O_2$ max was slightly diminished. Similar $\dot{t}\dot{V}O_2$ max were obtained when calculated from values higher than 95% of $\dot{V}O_2$ max and TTE minus time to reach 95% of $\dot{V}O_2$ max. However, it has been demonstrated that, at the end of an exhaustive continuous exercise, a decrease in $\dot{V}O_2$ was often observed [16]. In such conditions, the method based on the time to reach $\dot{V}O_2$ max could lead to an overestimation of $\dot{t}\dot{V}O_2$ max. Moreover, such methodology is not applicable when $\dot{t}\dot{V}O_2$ max has to be calculated for short intermittent runs that are characterised by frequent variations in $\dot{V}O_2$ [3,5,6]. The method based on the sum of times spent above 95% of the $\dot{V}O_2$ max of the day was assumed to be the more accurate to calculate $\dot{t}\dot{V}O_2$ max. #### Conclusion This study has shown that the variability in $\dot{V}O_2$ max is a parameter to be taken into account in the calculation of $t\dot{V}O_2$ max. In the present study, the determination of the $\dot{V}O_2$ max of the day was made from an exercise at V_{UMTT} + 1 km × h⁻¹, which was of sufficient intensity and duration to elicit $\dot{V}O_2$ max. This study also showed that the $t\dot{V}O_2$ max depends on the method used. The method based on the sum of each value higher than 95% of $\dot{V}O_2$ max of the day appears the most robust method to calculate $t\dot{V}O_2$ max. ### Acknowledgements The authors gratefully acknowledge the administration of the stade régional couvert de Liévin where the field tests were performed, Dr Bacquaert and the Institut Régional de Biologie et de Médecine du Sport, Région Nord-Pas de Calais, for medical assistance. #### References - ¹ Berthoin S, Pelayo P, Lensel-Corbeil G, Robin H, Gerbeaux M. Comparison of maximal aerobic speed as assessed with laboratory and field measurements in moderately trained subjects. Int J Sports Med 1996; 17: 525 529 - 2 Billat VL, Koralsztein JP. Significance of the velocity at $\dot{V}O_2max$ and time to exhaustion at this velocity. Sports Med 1996; 22: 90 108 - ³ Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol 1999; 80: 159 – 161 - ⁴ Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP. Intermittent runs at the velocity associated with maximal oxygen uptake enable subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000; 81: 188 196 - 5 Billat VL, Slawinski J, Bocquet V, Chassaing P, Demarle A, Koralsztein JP. Very short (15 s 15 s) interval-training around the critical velocity allows middle-aged runners to maintain $\dot{V}O_2$ max for 14 minutes. Int J Sports Med 2001; 22: 201 208 - ⁶ Dupont G, Blondel N, Lensel G, Berthoin S. Critical velocity and time spent at a high level of VO₂ for short intermittent runs at supramaximal velocities. Can J Appl Physiol 2002; 27: 103 115 - ⁷ Gorostiaga EM, Walter CB, Foster C, Hickson RC. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol 1991; 63: 101 – 107 - 8 Hill DW, Rowell AL. Responses to exercise at the velocity associated with VO₂max. Med Sci Sports Exerc 1997; 29: 113 – 116 - ⁹ Hill DW, William CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with \dot{VO}_2 max. Int J Sports Med 1997; 18: 325 329 - ¹⁰ Kamber M. Laktatmessungen in der Sportmedizin: Messmethodenvergleich. Schweiz Ztschr Sportmed 1992; 40: 77 86 - Katch VL, Sady SS, Freedson P. Biological variability in maximum aerobic power. Med Sci Sports Exerc 1982; 14: 21 – 25 - ¹² Lacour JR, Padilla-Magunacelaya S, Chatard JC, Arsac L, Barthélémy JC. Assessment of running velocity at maximal oxygen uptake. Eur J Appl Physiol 1991; 62: 77 – 82 - ¹³ Leger L, Boucher R. An indirect continuous running multistage field test: the Université de Montréal Track Test. Can J Appl Spt Sci 1980; 5(2): 77-84 - ¹⁴ McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE. Validation of the COSMED K4 b² portable metabolic system. Int J Sports Med 2001; 22: 280 284 - 15 Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at $\dot{V}O_2$ max among well-trained male runners. Med Sci Sports Exerc 1989; 21: 78 83 - ¹⁶ Perrey S, Candau R, Millet GY, Borrani F, Rouillon JD. Decrease in oxygen uptake at the end of a high-intensity submaximal running in humans. Int J Sports Med 2002; 23: 298 304 - ¹⁷ Tabata I, Irisawa K, Kouzaki M, Nishimura K, Ogita F, Miyachi M. Metabolic profile of high-intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390 – 395 - ¹⁸ Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 1986; 3: 346–356