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A B S T R A C T

The structural hydroxyl content of the nominally anhydrous minerals (olivine and pyroxenes) in the upper
mantle is among the important attributes that influence the physical and chemical features of the upper mantle.
In this study, we provide detailed Fourier-transform infrared (FTIR) data on 63 petrographically and geo-
chemically well-defined upper mantle xenoliths from the Nógrád-Gömör Volcanic Field (Pannonian Basin,
Central Europe). These xenoliths show extremely low average structural hydroxyl contents (~0, 31 and 185 ppm
for olivine, orthopyroxene and clinopyroxene, respectively) compared to values reported regionally and
worldwide. The studied xenoliths have anomalous types of FTIR spectra and high structural hydroxyl ratios
between clinopyroxenes and orthopyroxenes (an average of ~8). Furthermore, there is usually no correlation
between the structural hydroxyl content and other physical or chemical properties of the xenoliths. These
specific FTIR characteristics suggest that the Nógrád-Gömör upper mantle xenoliths were exposed to significant
modification of their structural hydroxyl contents, which may be linked to pre- and post-eruptive processes.
Decompression during extension leads to lower ‘water’ activity, which is most likely to have played a key role.
However, pre-eruptive mantle metasomatism with an agent having low water activity cannot be excluded either.
The post-eruptive cooling can be significant as well, as suggested by the higher structural hydroxyl content in
xenoliths hosted in more rapidly cooled volcanic facies (i.e. pyroclastics).

Our study reveals how FTIR characteristics may evolve in continental rift settings in young extensional basins.
Furthermore, novel applications of our study are the diagnostic features that indicate significant changes in
structural hydroxyl properties. This contributes to distinguishing low structural hydroxyl contents linked to the
pre-eruptive (i.e., low structural hydroxyl content in pyroxenes, anomalous partitioning and anomalous band
characteristic in pyroxenes) or the post-eruptive (completely ‘dry’ olivines) periods.

1. Introduction

Structural hydroxyl refers to hydrogen incorporated in the crystal
lattice of nominally anhydrous minerals (NAMs). If other forms of hy-
drogen are discussed they will be referred to specifically. The structural

hydroxyl content of the lithospheric mantle is crucial, as it is thought to
play a key role in influencing the melting temperature (Green et al.,
2010), rheological properties (Karato and Jung, 2003; Kohlstedt, 2006;
Demouchy et al., 2012; Girard et al., 2013; Bollinger et al., 2014),
electrical conductivity (Selway et al., 2014), seismic wave attenuation
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(Aizawa et al., 2008) and deformation patterns (Jung et al., 2006;
Manthilake et al., 2013). Furthermore, since hydrogen is considered as
a highly incompatible element (Hirschmann et al., 2009) the structural
hydroxyl contents of mantle xenoliths can be associated with metaso-
matic processes as well. Thus, it is important to characterize the dis-
tribution of structural hydroxyl in the lithosphere and monitor its
variation with respect to major- and trace-element geochemistry and
deformation patterns.

In mantle environment, ‘water’ can occur either as molecular water
in fluid inclusions and bubbles of silicate melt inclusions (e.g. Berkesi
et al., 2009; Hidas et al., 2010) or as structurally bound hydroxyl in-
corporated in mineral structures (e.g. Bell and Rossman, 1992;
Demouchy and Bolfan-Casanova, 2016; Peslier et al., 2017; Xia et al.,
2017). Hydrous mantle phases such as amphibole and mica can contain
appreciable structural hydroxyl (1.5–5 wt%), however, their modal
presence is usually low (<5 vol%). Furthermore, amphibole is only
stable in conditions below ~1100 °C and ~3GPa (Green et al., 2010;
Mandler and Grove, 2016). Hence, despite their relatively low contents
of structurally bound hydroxyl (tens to few hundred ppm), NAMs such
as olivine, orthopyroxene and clinopyroxene, which compose most of
the upper mantle, control the concentration and distribution of struc-
tural hydroxyl below the Moho (e.g. Bell and Rossman, 1992; Peslier,
2010; Peslier et al., 2017).

In this paper, we report an exceptionally large number of Fourier-
transform infrared (FTIR) analyses of NAMs in 63 upper mantle xeno-
liths with variable compositions from the Nógrád-Gömör Volcanic Field
(Pannonian Basin, Central Europe), providing one of the most detailed
studies in this field so far. Spinel peridotite xenoliths of this locality,
which are hosted by both effusive and pyroclastic alkali basalts, were
thoroughly investigated both geochemically (major and trace element
characteristics) and seismically (seismic anisotropy, SKS delay time) in
previous studies (Patkó et al., 2013; Klébesz et al., 2015; Liptai et al.,
2017). Consequently, a detailed comparison of the structurally bound
hydroxyl contents with different physical and geochemical parameters
is possible. However, there are only a few papers concerning the
question whether the structural hydroxyl contents in NAMs are re-
presentative of their original mantle environment or not (Denis et al.,
2013, 2015, 2018; Lloyd et al., 2016; Tian et al., 2017)? In this paper,
we assemble spectral features and physico-chemical characteristics,
which unequivocally infer re-equilibration of structural hydroxyl
during pre-, syn- or post-eruptive stages. Therefore, this detailed case
study aims to provide guidelines for how re-equilibration of structural
hydroxyl can be identified in upper-mantle xenoliths related to exten-
sional geodynamic settings and post-eruptive processes.

2. Geological background

The Pannonian Basin is an extensional back-arc basin (Royden et al.,
1982; Csontos et al., 1992; Horváth, 1993) situated in Central Europe,
and is surrounded by the Alpine, Carpathian and Dinaric orogenic belts
(Fig. 1a). The dominantly young (Neogene) sediment-covered basin
(e.g. Magyar et al., 2013) consists of two different tectonic mega-units,
which are the ALCAPA (ALps-CArphathian-PAnnonian block) in the
northwest with Mediterranean affinity, and the Tisza-Dacia block in the
southeast, of European origin (Balla, 1984; Csontos et al., 1992; Csontos
and Vörös, 2004). The two microplates are separated by the Mid-
Hungarian Shear zone (Csontos and Nagymarosy, 1998). The juxtapo-
sition of the two mega-units started in the late Oligocene with the ex-
trusion of ALCAPA from the Alpine collision zone due to the northward
movement of the Adriatic microplate (Kázmér and Kovács, 1985;
Ratschbacher et al., 1991; Horváth, 1993), and was further aided by an
asthenospheric flow (Kovács et al., 2012a). The docking of the mega-
units in the Carpathian embayment was followed by significant exten-
sion in the latest early Miocene (Bada and Horváth, 2001; Huismans
et al., 2001). Several processes have been proposed as the main cause of
the extension, such as subduction roll-back (Royden et al., 1982;

Horváth, 1993), asthenospheric up-doming (Stegena et al., 1975),
asthenospheric flow (Kovács et al., 2012a) coupled with thermal ero-
sion, gravitational instability of the mantle lithosphere (Houseman and
Gemmer, 2007), or various combinations of these effects.

The evolution of the basin was accompanied by widespread volcanic
activity during the last 21Ma, including the silicic, calc-alkaline and
alkali volcanic magmatism (Szabó et al., 1992; Harangi, 2001; Kovács
and Szabó, 2008; Lexa et al., 2010). The formation of monogenetic
alkali mafic/basaltic volcanic fields took place during the last 10Ma
(Pécskay et al., 2006). Their generation is conventionally explained by
adiabatic decompression melting in the upwelled and thermally re-
laxing asthenosphere in the post-extensional period (e.g. Embey-Isztin
et al., 1993; Seghedi et al., 2004; Harangi et al., 2015). Alternatively,
compression during the tectonic inversion of the region may have
squeezed partial melt out from the asthenospheric dome, to be trapped
between the converging Adriatic plate and the European platform. The
ascent of basaltic melts to the surface may have been also facilitated by
the formation of deep fractures in the folding lithosphere in the same
compressional stress field (Kovács et al., 2018). The alkali basalts
brought upper-mantle xenoliths to the surface in five occurrences
scattered in the region, out of which the NGVF is the northernmost
(Fig. 1a).

3. Sampling localities and sample description

The 63 xenoliths presented in this paper were the focus of previous
geochemical and microstructural studies (Patkó et al., 2013; Liptai
et al., 2017; Liptai et al., in prep). The xenoliths can be divided into
wehrlite (Patkó et al., 2013) and lherzolite groups (Liptai et al., 2017;
Liptai et al., in prep). The wehrlite series consists of 12 xenoliths, which
are exclusively from the central part of the NGVF (Fig. 1b). The lher-
zolite series consists of 51 xenoliths, which, in addition to central-part
localities, also occur in the northern and southern segments of the
NGVF (Fig. 1b). These cover all the known xenolith-bearing localities in
NGVF. With the exception of Jelšovec, where xenoliths occur in pyr-
oclastic rocks, all xenoliths are hosted in lavas (Fig. 1b).

The studied xenoliths are angular or rounded and relatively small
(3–5 cm in diameter), and careful selection preceded the analyses in
order to avoid basalt infiltration. Xenoliths with surface alteration (e.g.
iddingsite) were omitted from further investigation.

4. Analytical method and data processing

FTIR microscopic analysis to analyze structural hydroxyl in NAMs
was performed in the Research Centre for Natural Sciences of the
Hungarian Academy of Sciences in Budapest using a Varian FTS 7000
FTIR spectrometer coupled to a Varian UMA-600 IR microscope, and at
the Geochemical Analysis Unit at Macquarie University in Sydney, ap-
plying a ThermoFisher iN10 FTIR microscope attached to a Varian FTS-
60A spectrometer. The analyses were performed using unpolarized in-
frared light. Infrared spectra of olivine and pyroxenes were obtained
between 4000 and 400 cm−1, using a maximum of 100×100 μm
aperture size. The samples were measured with a ‘Globar’ light source,
KBr beam-splitter and an MCT detector. At least 128 scans were accu-
mulated from each spot with a 4 cm−1 resolution. During the mea-
surements the sample chamber and the interferometer were constantly
flushed with compressed nitrogen to reduce background related to at-
mospheric moisture and carbon dioxide.

The method of Kovács et al. (2008) and Sambridge et al. (2008) for
unpolarized infrared light makes it possible to determine the con-
centration of structural hydroxyl accurately even from few (n > 5)
unoriented anisotropic crystals such as olivine and pyroxenes. Ob-
viously the more unoriented grains are considered, the more accurate is
the estimation. However, the accuracy of pyroxene measurements can
be still satisfactory if< 5 or even only one unoriented grains are con-
sidered (Xia et al., 2013a; Liu et al., 2015). This method may be applied
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Fig. 1. (a) Simplified geological map of the Carpathian-Pannonian region with the assumed ALCAPA - Tisza-Dacia microplate boundary (after Csontos and
Nagymarosy, 1998 and references therein). Xenolith-bearing Neogene alkali basalt occurrences are depicted using abbreviations: SBVF, Styrian Basin Volcanic Field;
LHPVF, Little Hungarian Plain Volcanic Field; BBHVF, Bakony–Balaton Highland Volcanic Field; NGVF, Nógrád–Gömör Volcanic Field; PMVF, Perșani Mountains
Volcanic Field. (b) Alkali basalt occurrences and xenolith sampling locations in the Nógrád-Gömör Volcanic Field (modified after Jugovics, 1971); quarries or
outcrops from NW to SE can be divided into three parts. Namely these are the following: northern segment: Podrečany (NPY), Mašková (NMS), Jelšovec (NJS); central
segment: Fil'akovo-Kerčik (NFL), Trebel'ovce (NTB), Fil'akovské Kováče (NFK), Ratka (NFR), Mačacia (NMC), Magyarbánya (NMM) Eresztvény (NME) and southern
segment: Bárna (NBN).
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only if the maximum linear unpolarized absorbance is< 0.15, a cri-
terion that was always met in this study. The total polarized absorbance
(Atot) is estimated as three times the average unpolarized integrated
absorbance. The Atot for each NAM in each sample was obtained using
the OPUS® software, applying the following steps: (1) background
correction using the concave rubber-band correction routine with 2
iterations and 64 baseline points; (2) averaging the spectra; (3) in-
tegration of spectral ranges of structurally bound hydroxyl with B-type
integration applying uniform intervals for each mineral (3583–3505
and 3290–3170 cm−1 for olivines; 3740–3020 cm−1 for orthopyrox-
enes and 3765–3000 cm−1 for clinopyroxenes). Integrated total absor-
bance values are normalized to 1 cm thickness. The thickness of the
sections was measured with a Mitutoyo analogue micrometer, which is
accurate to 2–3 μm within the thickness range considered. The Atot is
then converted to absolute concentration of structural hydroxyl (ex-
presses as H2O equivalent in ppm wt%) using the mineral-specific ca-
libration factors of Bell et al. (1995) for ortho- (kopx= 0.0674) and
clinopyroxene (kcpx= 0.14) and kol= 0.188 for olivine (Bell et al.,
2003). In the case of olivine, calculations of structural hydroxyl content
using site specific absorption coefficients were also carried out
(kol[Ti] = 0.18 and kol[Mg]= 0.03; Kovács et al., 2010). Since the cal-
culations using the different factors led to similar results, we only used
values gained by the mineral specific calibration of Bell et al. (2003) in
this study because of its more frequent application in the literature. It
was recently argued that the wavenumber-dependent calibration by
Libowitzky and Rossman (1997) is more suitable for diopside (Weiss
et al., 2018). However, for the sake of comparing our results with
previous ones, we preferred to keep the same calibration that is gen-
erally used for pyroxenes. Note that the calibration factor is often used
equally as integral molar extinction (or absorption) coefficient (ε [L /
mol ∗ cm2)) which is related to the k calibration factor through the
following formula: k=MA / (ρ ∗ ε), where the MA is the molar weight of
water (18.02 g), ρ is density of the target mineral in g/L.

The detection limit of the micro-FTIR technique for nominally an-
hydrous silicate minerals is routinely at or below 1 ppm for structural
hydroxyl (e.g. Bell et al., 1995) if the measurement conditions are op-
timal. This means that the degree of atmospheric interference (e.g.,
atmospheric moisture and carbon-dioxide) is minimalized, the mea-
surement spot is free of hydrous inclusions, contaminations and al-
teration products, the thin section is 200–300 μm thick and the aperture
size is at least ~50 ∗ 50 μm. This practice ensures the maximum signal
to noise ratio during analysis.

Considering the uncertainties in the integral molar extinction
coefficient (ε [L /mol ∗ cm2)]), density (ρ [g/L]), sample thickness (t
[cm]) and total polarized absorbance (Atot [cm−1]) – assumed to be
estimated based on five random measurements on unoriented grains
with unpolarized radiation – the one σ relative uncertainties for
structural hydroxyl content in olivine, orthopyroxene and clinopyr-
oxene are 20, 7 and 6% respectively based on the error propagation
formula in Table 5 of Liu et al. (2006). The uncertainties for ε and ρ are
from Bell et al. (1995, 2003) and for the thickness measurement we
assumed 1.5% relative uncertainty. The uncertainty in the estimation of
the total polarized absorbance from the average of five random un-
oriented, unpolarized measurements was determined by a Monte Carlo
simulation using the principal polarized absorbances of GRR1695-2
olivine (Bell et al., 2003), PMR-53 clinopyroxene and KBH-1 ortho-
pyroxene (Bell et al., 1995) and Eq. (6) in Kovács et al. (2008) (see also
Supplementary Table 1 for technical details). Note that the spectral
characteristics of the applied mineral standard are usually more or less
similar to the ones we observed. This cumulated uncertainty, never-
theless, is lower if the number of analyzed unoriented grains exceeds
five, which is generally the case in our study, thus, these values re-
present only a worst case scenario.

5. Sample petrography and geochemistry

The NGVF upper mantle xenoliths, all spinel peridotites, show great
variability both in petrography and geochemistry, which implies a
heterogeneous mantle beneath the region (Liptai et al., 2017).

The wehrlite series is quite uniform in modal composition (72–82
vol% for olivine and 10–24 vol% for clinopyroxene) with only a few
orthopyroxene remnants (< 1 vol%) enclosed in clinopyroxene and
olivine. In two wehrlite xenoliths (NFK1137A, NMM1129) orthopyr-
oxene is completely absent. Xenoliths of the lherzolite series, although
they have great modal variability (43–89 vol% olivine, 1–46 vol% or-
thopyroxene and 2–19 vol% clinopyroxene), are dominantly lherzolites
with minor wehrlites (NFL1326, NFL1327, NFR0306) and harzburgites
(NFL1315A) (Table 1 in Liptai et al., 2017). These individual wehrlite
specimens are distinguished from those in the wehrlite series by their
petrographic and geochemical characteristics, having deformed grains
in textural equilibrium and lower contents of basaltic major elements
(Fe, Ti, Mn, Ca). The determined xenolith textural types are different for
the two distinct series. Xenoliths of the lherzolitic series have por-
phyroclastic, protogranular and equigranular textures in decreasing
order of frequency (Liptai et al., 2017). In contrast, the wehrlites show
reaction textures with non-equilibrated replacement patterns and in-
terlacing finger microtextures (Patkó et al., 2013).

The major and trace element geochemistry of wehrlites shows sig-
nificant heterogeneity not only among xenoliths, but even within
grains, which is not characteristic for xenoliths of the lherzolite group.
The wehrlites are enriched in Fe, Mn, and Ca in olivine, Fe, Ti, Mn, and
Ca in orthopyroxene, Fe, Ti, Al, Mn and light rare earth elements
(LREE) in clinopyroxene and Fe and Ti in spinel compared to those in
lherzolites. Xenoliths of the lherzolite series show wide variability in
both major- and trace-element contents, as a result of heterogeneous
partial melting and subsequent metasomatism. Some lherzolites have
geochemical characteristics similar to the wehrlites, indicating a
common mafic melt-related metasomatism (Liptai et al., 2017).

6. Infrared spectroscopy of nominally anhydrous minerals

Representative infrared spectra of NAMs from the examined
Nógrád-Gömör xenoliths are depicted in Fig. 2. The estimated con-
centrations of structural hydroxyl are listed in Table 1. The structural
hydroxyl content is mostly homogenous within single xenoliths be-
longing to the lherzolite series. However, rarely in the lherzolite series
(e.g. NMS1305), but more frequently in the wehrlite series (e.g.
NTB1120, NFR1117A) there are xenoliths which have heterogeneous
structural hydroxyl contents not only within xenoliths, but even within
individual mineral constituents.

6.1. Olivine

The thickness of olivine crystals analyzed ranged from 70 μm to
350 μm. With the exception of the four pyroclastite-hosted Jelšovec
xenoliths (NJS), in which weak bands appear at ~3572, ~3525 and
3230 cm−1 (Fig. 2a, thicknesses 170 to 225 μm), there are no bands
related to structural hydroxyl visible in olivine. The most intense linear
absorption is always related to the ~3572 cm−1 band, which deviates a
little in NJS1306, shifting towards a lower wavenumber (~3568 cm−1).
The band at ~3230 cm−1 is broad with a half width of ~40 cm−1

(Fig. 2a). The calculated structural hydroxyl content (expressed in H2O
equivalent in ppm wt%) exceeds 4 ppm only in one xenolith (NJS1304),
whereas in the rest of the xenoliths (NJS1302, NJS1306, NJS1307) it is
between 2.5 and 3.5 ppm (Table 1).

6.2. Orthopyroxene

The averaged unpolarized orthopyroxene FTIR spectra vary con-
siderably, hence a classification was carried out based on the linear
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absorption intensities and band positions (Fig. 2b). In some xenoliths of
the lherzolite series, orthopyroxene analyses could not be carried out
(Table 1), either because of the lack of orthopyroxene (NFL1326) or
their insufficient size (NFL1327, NFR0306). Furthermore, in a few
lherzolite xenoliths (NPY1301, NPY1310, NPY1311, NPY1314,
NFL1315A, NME0528, NME1116) structural hydroxyl content was
below the limit of detection. No appropriate orthopyroxene spectra
were obtained from xenoliths of the wehrlite series either, because of
the absence of orthopyroxene or the small size (200–400 μm) of or-
thopyroxene grains.

The three most intense bands are situated at ~3600, ~3525 and
~3420 cm−1 wavenumbers. However, less frequently appearing bands
at ~3585 and 3565 cm−1 were also taken into account during classi-
fication. In xenoliths where any of these five bands were absent, ab-
sorption intensity values at the band positions were still read and used.

The band at ~3600 cm−1 is normally the most intense and ab-
sorption intensities decrease with decreasing wavenumber. This spec-
trum type is defined as type 1 (35% of all orthopyroxenes) (Fig. 2b).
Spectrum types diverging from spectrum type 1 are referred as type 2,
which have two subtypes. In the dominant 2a subtype, the spectrum is
characterized by more intense absorption at ~3420 cm−1 compared to
~3525 cm−1 (50% of all orthopyroxenes) (Fig. 2b). In the less abun-
dant type 2b orthopyroxene spectra (15% of all orthopyroxenes), a
well-defined band appears at ~3565 cm−1, always accompanied by a
subtle shoulder at ~3585 cm−1 (or the other way around) (Fig. 2b).
Usually, the former is more intense (NFL1324, NMM1115, NMM1126,
NMM0318, NME1122), but in two xenoliths (NMS1310, NTB1124) the
latter shows higher absorption intensity.

Besides these main absorption bands, there are less frequent bands
occurring at ~3695–3675 cm−1 (Supplementary Fig. 1a) and
~3270–3200 cm−1 (Table 1; see spectra on PULI spectral database at
puli.mfgi.hu). Bands in the former range are normally well-defined
narrow bands (their half width ~10–20 cm−1). In contrast, bands at
lower wavenumbers are broader and weaker and only minimally con-
tribute to the hydroxyl signal of the orthopyroxenes.

The structural hydroxyl contents in orthopyroxenes are extremely
variable, ranging between 1 and 147 ppm (with an average of 31 ppm)
(Table 1). In all three types, most orthopyroxenes have structural hy-
droxyl contents lower than 30 ppm (54, 62 and 100% of type 1, 2a and
2b, respectively) (Fig. 2b).

6.3. Clinopyroxene

Clinopyroxenes in all but two lherzolite xenoliths (NPY1310,
NPY1311) contain measurable amounts of structural hydroxyl
(Table 1). Clinopyroxene spectra are classified into three types based on
the relative absorption intensities of the two most intense bands at
~3630 and ~3525 cm−1 (Table 1). Bands at the former position are
always present, whereas bands at the latter one are occasionally absent.
The three clinopyroxene types (1, 2a and 2b) are defined with quotients
of the absorption intensity values of ~3630 and ~3525 cm−1 wave-
numbers being>1.2 (3630 cm−1 dominates), 1.0–1.2 (the two main
bands are similar in intensity) and<1.0 (3525 cm−1 band dominates),
respectively (Fig. 2c). In most xenoliths, clinopyroxenes belong to type
1 (69%), whereas type 2a and 2b are present in 14 and 17%, respec-
tively (Table 1).

In addition to the two main bands, several further bands appear in
some of the clinopyroxene spectra (see spectra on PULI spectral data-
base at puli.mfgi.hu). In several samples, spectra have shoulders at high
wavenumbers (3695–3670 cm−1) as in the orthopyroxenes
(Supplementary Fig. 1b; Table 1). However, there are only a few

lherzolite xenoliths (NTB0307, NFR0307, NFL1305, NBN0311) where
these shoulders appear simultaneously in both pyroxenes. Further weak
bands are sometimes present at ~3455–3445 and ~3250–3230 cm−1

(Table 1; see spectra on PULI spectral database at puli.mfgi.hu).
Xenoliths with type 1 clinopyroxenes have higher maximum and

average contents of structural hydroxyl (0.5–894 ppm with an average
of 217 ppm) than xenoliths with type 2a and type 2b clinopyroxenes
(53–360 and 19–294 ppm with an average of 134 and 98 ppm, re-
spectively) (Fig. 2c). Note that among type 2a clinopyroxenes the
content of structural hydroxyl is always> 50 ppm. In contrast, the most
dominant range of structural hydroxyl concentrations for clinopyrox-
enes with type 2b spectra is< 50 ppm (38%; Fig. 2c). Clinopyroxenes
in the lherzolite series have structural hydroxyl concentrations of
0.5–481 ppm (with an average of 132 ppm) (Table 1). This variability is
present in the wehrlite series as well. In addition, wehrlite xenoliths
sometimes contain grains that are both poor (21–464 ppm) and rich in
structural hydroxyl (202–894 ppm) with an average of 140 and
481 ppm structural hydroxyl, respectively (Table 1). Both types appear
within individual xenoliths. Similarly, according to their petrographic
and geochemical characteristics, the wehrlite xenoliths can be divided
into two groups, one with less stealth metasomatism (lower basaltic
major element and clinopyroxene enrichment) and one with extensively
stealth metasomatism (higher basaltic major element and clinopyr-
oxene enrichment) (Patkó et al., 2013). The only exception is wehrlite
xenolith NMM1129, which contains only clinopyroxene poor in struc-
tural hydroxyl. Among the wehrlite xenoliths, all clinopyroxene spec-
trum types are present, with type 1 being the most dominant.

Type 1 clinopyroxene spectra are usually accompanied by 1 and 2a
type orthopyroxene spectra (24 and 37%, respectively). Although all
possible combinations of spectrum types are present in the NGVF, in
addition to 1-1 and 1-2a, only 2b-2a clinopyroxene-orthopyroxene pairs
have a higher abundance than 10% (11%).

6.4. Whole-rock structural hydroxyl content

Whole-rock contents of structural hydroxyl were calculated from
analyses of the mineral constituents weighted by their modal propor-
tion (Table 1). The bulk contents of structural hydroxyl range between
1 and 72 ppm (with an average of 17 ppm) and 2 and 111 ppm (with an
average of 30 ppm) for xenoliths of the lherzolite and wehrlite series,
respectively. The highest averaged whole-rock structural hydroxyl
content is shown by the Jelšovec xenoliths (NJS) (up to 45 ppm). In
these estimations, the hydrous phases were not considered because of
their restricted appearance (i.e., amphibole content> 1 vol% only in
lherzolite xenolith NMS1304, NFL1324 and NFL1326; Liptai et al.,
2017).

7. Discussion

7.1. Interpretation of the infrared spectra

It is widely accepted that different stretching bands of structural
hydroxyl on the FTIR spectra represent different modes of structural
hydroxyl incorporation into NAMs (e.g. Beran and Putnis, 1983). In the
NAMs of the upper mantle, incorporation of structural hydroxyl in
olivine has been the best explored so far, due to its dominant role in
regulating the physical properties of the upper mantle. Among the
NGVF xenoliths, only olivines in a few samples from a single locality
(Jelšovec - NJS) show absorption bands, albeit rather weak. These
bands are situated at ~3572, ~3525 and ~3230 cm−1 (Fig. 2a). The
first two wavenumber values are typical for Ti-clinohumite point

Fig. 2. Representative average unpolarized spectrum types of (a) olivine, (b) orthopyroxene, and (c) clinopyroxene of the studied Nógrád-Gömör upper mantle
xenoliths with accompanying histograms and box and whisker diagrams of the structural hydroxyl contents (expressed in H2O equivalent in ppm wt%). The box and
whisker diagram is a visualized five-number summary of a data set including minimum and maximum values, first and third quartile and the median.
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defects [Ti], when a Ti4+ in the octahedral site is compensated by the
incorporation of two hydrogens in the neighboring vacant tetrahedral
site (e.g. Berry et al., 2005; Kovács et al., 2010). The band appearing at
~3230 cm−1 is linked to hydrogen incorporation into octahedral (Mg)
vacancies [Mg] (e.g. Berry et al., 2005; Kovács et al., 2010). In many

natural samples, the [Ti] substitution mechanism is the most common
(e.g. Xia et al., 2010; Denis et al., 2015; Aradi et al., 2017), which
agrees well with some laboratory experiments (e.g. Berry et al., 2005;
Kovács et al., 2012b; Demouchy et al., 2017).

The three most intense stretching bands of structural hydroxyl in
orthopyroxene are situated at ~3600, ~3525 and ~3420 cm−1 in the
NGVF xenoliths (Fig. 2b). This agrees well with natural samples from
several locations situated in a range of tectonic settings (Peslier et al.,
2002; Bonadiman et al., 2009; Xia et al., 2010, 2013b; Yu et al., 2011;
Demouchy et al., 2015; Denis et al., 2015; Li et al., 2015; Pintér et al.,
2015; Hao et al., 2016a; Aradi et al., 2017). Most commonly, the
dominant spectrum type is characterized by decreasing intensities of
peaks from higher towards lower wavenumbers (type 1 in our no-
menclature). In contrast, in the NGVF, only 35% of all orthopyroxene
spectra belong to this group (Table 1). The spectrum type with a more
intense band at ~3420 cm−1 than at ~3525 cm−1 (type 2a in our no-
menclature), as well as spectra with intense bands at ~3565 cm−1 and
~3585 cm−1 (type 2b in our nomenclature) have both been described
in the literature. However, their presence appears to be only sub-
ordinate (e.g. Demouchy et al., 2015; Gu et al., 2018). On the contrary,
in the NGVF, type 2a and 2b orthopyroxenes occur frequently (50 and
15%, respectively; Table 1). Because of the more complex structure and
presumably subordinate importance of orthopyroxene, and conse-
quently the relatively limited research into this topic, it is currently
ambiguous as to which substitution mechanisms of structural hydroxyl
are related to specific bands. However, the available experimental re-
sults suggest that bands appearing at wavenumbers above 3400 cm−1

might be explained by coupled substitution mechanisms where struc-
tural hydroxyl is linked to trivalent cations in the orthopyroxene
structure (Stalder and Skogby, 2002; Stalder, 2004). It is rather prob-
able, however, that shoulder-like bands at ~3675–3695 cm−1 (Sup-
plementary Fig. 1a) can be attributed to (often only nano-sized) hy-
drous lamellae in pyroxenes, most probably amphibole (Della Ventura
et al., 2007; Kovács et al., 2012b). Note that this is not structural hy-
droxyl in the pyroxene structure, but the dissolution of separate hy-
drous minerals (e.g. amphibole or mica) from the pyroxene lattice itself.

Similarly to orthopyroxenes, the main bands in NGVF clinopyrox-
enes, located at ~3630 and ~3525 cm−1 (Fig. 2c), agree well with
those reported in natural samples all over the world (Peslier et al.,
2002; Bonadiman et al., 2009; Xia et al., 2010, 2013a, 2013b; Yu et al.,
2011; Demouchy et al., 2015; Denis et al., 2015; Li et al., 2015; Pintér
et al., 2015; Hao et al., 2016a; Aradi et al., 2017). In the most common
(69%) spectrum type in the NGVF the peak at ~3630 cm−1 is more
intense than the others (type 1 in our nomenclature). This observation
is consistent with clinopyroxene spectra reported by other studies, ir-
respective of their tectonic setting (Bonadiman et al., 2009; Xia et al.,
2013a; Pintér et al., 2015). Spectra with equal (type 2a in our no-
menclature) or higher intensity (type 2b in our nomenclature) of the
peak at 3525 relative to the one at ~3630 cm−1 (14 and 17% in the
NGVF, respectively) have also been described from the North China
Craton, albeit in significantly lower abundance (Xia et al., 2010, 2013b;
Li et al., 2015). Akin to orthopyroxene, the incorporation mechanisms
of structural hydroxyl in clinopyroxene are not yet fully understood.
Nevertheless, the different bands are possibly linked to incorporation of
coupled hydroxyl and trivalent cations or structural hydroxyls in vacant
M- and Si-sites (Stalder and Ludwig, 2007). Bands at high wavenumbers
(~3675–3695 cm−1) (Supplementary Fig. 1b), as in orthopyroxene, can
be ascribed to hydrous lamellae, most probably amphibole (Ingrin
et al., 1989; Della Ventura et al., 2007). These related bands are more
common in clinopyroxenes from the wehrlites than in those from the
lherzolite series (Table 1.).

In conclusion, the spectral characteristics of olivines lack structural
hydroxyl related bands with the exceptions of olivines from one locality
(Jelšovec - NJS). Furthermore, in case of the orthopyroxenes and clin-
opyroxenes bands at lower wavenumbers (< 3600 cm−1 and< 3630
cm−1, respectively) usually appear to play more important role than in

Fig. 3. Box and whisker diagram of the structural hydroxyl content (expressed
in H2O equivalent in ppm wt%) of (a) olivines (b) orthopyroxenes and (c)
clinopyroxenes from CPR localities and worldwide off-craton peridotites. Box
and whisker diagram is a visualized version of five-parameters including
minimum and maximum values, first and third quartile and the median. Note
that we distinguished the lherzolite and wehrlite series in case of Nógrád-
Gömör data. Data sources are the following: Aradi et al., 2017 for SBVF xe-
noliths, Falus et al., 2008 for PMVF and Peslier, 2010 and references therein for
the off-craton peridotites. Abbreviations: NGVF - Nógrád-Gömör Volcanic Field;
SBVF - Styrian Basin Volcanic Field; PMVF - Perșani Mountains Volcanic Field.
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other pyroxenes worldwide, where the high wavenumber bands are the
dominant ones.

7.2. Implications of the structural hydroxyl contents

The structural hydroxyl contents measured in olivine, orthopyr-
oxene and clinopyroxene are given in Table 1. Most of the olivines are
completely ‘dry’ (i.e. structural hydroxyl is below the limit of detection
(≪1 ppm)). The few Jelšovec (NJS) xenoliths, which show weak bands
related to structural hydroxyl (Fig. 2a), have only very low contents of
structural hydroxyl (~2–4 ppm; Table 1). This observation is incon-
sistent with the generally higher structural hydroxyl contents reported
from other localities in the Carpathian-Pannonian region (CPR) so far.
Olivines in the Styrian Basin (SBVF) and Perşani Mountains (PMVF),
located at the western and eastern edges of the CPR, respectively, have
3–13 ppm (with an average of ~7 ppm) (Aradi et al., 2017) and
2–15 ppm (with an average of ~6 ppm) (Falus et al., 2008) structural
hydroxyl (Fig. 3a). This agrees well with olivine data from off-craton
settings (Peslier, 2010; Demouchy and Bolfan-Casanova, 2016; Peslier
et al., 2017; Fig. 3a). However, these low values are not unprecedented,
as similarly ‘dry’ xenoliths have been reported from several locations in
China (Yang et al., 2008; Bonadiman et al., 2009; Xia et al., 2010,
2013b; Hao et al., 2016a; Zhang et al., 2018), France (Gu et al., 2018)
and USA (Denis et al., 2018).

Pyroxenes, however, do have detectable structural hydroxyl con-
centrations in almost all NGVF xenoliths (Table 1). The orthopyroxene
and clinopyroxene values are between 1 and 147 ppm and 1–894 ppm,
respectively (with averages of 31 and 165 ppm). Even though some
pyroxenes include bands related to hydrous minerals at high wave-
numbers (~3675–3695 cm−1; Supplementary Fig. 1), the structural
hydroxyl contents may be considered as robust, since these lamellae
may have formed at the expense of structural hydroxyl in their host
pyroxene (e.g. Kang et al., 2017; Schmädicke and Gose, 2017). Even if
the source of excess hydroxyl for the formation of hydrous lamellae had
been external, their spectral contribution would only cause a subtle
overestimation (up to 5 ppm based on the integrated area of amphibole
shoulder at 3695 cm−1 and the wavenumber specific calibration of
Libowitzky and Rossman, 1997). All in all, the structural hydroxyl
contents of the NGVF pyroxenes are lower than those in other xenolith-
bearing localities in the CPR, which have an average of 156 and
433 ppm (values between 83 and 294 and 190–674 ppm, respectively
for orthopyroxenes and clinopyroxenes) in the SBVF (Aradi et al., 2017)
and an average of 206 and 447 ppm (for a range of 92–305 and
186–632 ppm) in the PMVF (Falus et al., 2008) (Fig. 3b–c). The SBVF
and PMVF values overlap well with H2O contents from off-cratonic
xenoliths worldwide (Peslier, 2010; Demouchy and Bolfan-Casanova,
2016; Peslier et al., 2017; Fig. 3b–c), which suggests that the structural
hydroxyl content of NGVF pyroxenes are low not only on a regional, but
also on a global scale. Similarly ‘dry’ xenoliths have been described
from a few localities in the North China Craton (Yang et al., 2008; Xia
et al., 2010, 2013b).

Partition coefficients of structural hydroxyl between pyroxenes are
highly variable (Fig. 4), ranging between 1 and 43 (Table 1). According
to recent reviews (e.g. Demouchy et al., 2017; Peslier et al., 2017; Xia
et al., 2017), Dcpx/opx values for structural hydroxyl vary between 1.5
and 3.5 and this range can be considered as ‘normal’ for natural sam-
ples. Pyroxenes from the SBVF (Aradi et al., 2017) and the PMVF (Falus
et al., 2008) usually fall within this range. Experimentally obtained
Dcpx/opx values are similar or slightly below this range (0.9–3.3)
(Aubaud et al., 2004; Hauri et al., 2006; Tenner et al., 2009; Kovács
et al., 2012b; Demouchy et al., 2017). In our study a great number of
xenoliths have structural hydroxyl partition coefficients between pyr-
oxenes higher than 3.5 (~ 80% of the NGVF xenoliths). A minor part of
the NGVF xenoliths, which falls in the range defined by Xia et al.
(2017), contains clinopyroxene-orthopyroxene pairs belonging to the 1-
1 and 1-2a groups.

The bulk rock structural hydroxyl content of NGVF xenoliths
averages 20 ppm (with a range of 1–111 ppm). These bulk rock data are
lower than those in the SBVF (average of 452 ppm; Aradi et al., 2017)
and the PMVF (average of 86 ppm; Falus et al., 2008). It should be
noted that most of the SBVF xenoliths contain amphibole (up to 32 vol
%), which significantly increases the bulk structural hydroxyl contents,
but even considering this the bulk structural hydroxyl content of NGVF
xenoliths is still relatively low.

In summary, structural hydroxyl contents of orthopyroxenes and
clinopyroxenes in the NGVF xenoliths are low compared to those from
other off-cratonic xenoliths worldwide. The partition coefficients of
structural hydroxyl between pyroxenes in almost ~80% of the NGVF
xenolith are higher (> 3.5) than other localities worldwide. This im-
plies that this anomalously low structural hydroxyl content and high
partition coefficient may have something to do with the geologically
relatively young age of the extension (≪20Ma) in the Pannonian Basin
and the young alkaline basaltic volcanism (mostly between 7 and 2Ma;
Pécskay et al., 2006). Therefore the Pannonian Basin offers us an ex-
cellent natural laboratory where these geologically young ages and the
short time elapsed between the extension and alkaline basaltic volcanic
activity have the capacity to provide information on the possible effect
of extension on the structural hydroxyl content of NAMs.

7.3. Relationship between geochemical and physical variables and the
hydroxyl content

Hydrogen is a highly incompatible element (Dperidotite/melt

(H2O)~ 0.001–0.01; Hirschmann et al., 2009) with even lower parti-
tion coefficients than La and Ce (Dcpx/melt (La) ~ 0.05 and Dcpx/melt

(Ce) ~ 0.086, respectively, Hart and Dunn, 1993). Although Hao et al.
(2014) suggested a higher partition coefficient for hydrogen (Dperidotite/

melt (H2O) ~ 0.1), this value is still around that of Ce, which suggests
that hydrogen reacts rapidly to depletion or enrichment. Furthermore,
it is widely accepted that structural hydroxyl content has a great impact
on the physical parameters (e.g. lattice-preferred orientation, electrical
conductivity) of mantle minerals (e.g. Jung et al., 2006; Selway et al.,
2014). Therefore, the relationship between the structural hydroxyl
contents and different geochemical and physical variables of NAMs has
been widely studied. However, in some cases either no correlation
(Falus et al., 2008; Bonadiman et al., 2009; Hao et al., 2016a) or only a
weak one has been found (Peslier et al., 2002; Soustelle et al., 2010; Yu
et al., 2011; Hao et al., 2012, 2016b; Doucet et al., 2014; Li et al., 2015;
Demouchy et al., 2015; Peslier and Bizimis, 2015; Baptiste et al., 2015;
Aradi et al., 2017).

The structural hydroxyl contents of clinopyroxenes in NGVF xeno-
liths, irrespective of their spectral type (1, 2a or 2b) or xenolith group
(lherzolitic or wehrlitic series), show no systematic relationship with
geochemical and physical parameters (Fig. 5). Similarly, there is no
clear link between the structural hydroxyl content of orthopyroxenes
and physical variables or equilibration temperatures (Fig. 6a–b).
However, a moderate correlation is present between the structural
hydroxyl content of orthopyroxenes and certain major elements and
heavy rare earth elements (HREE), but only in xenoliths with type 1
orthopyroxene spectra. The trend is positive for Al2O3, FeO, CaO, Na2O,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and negative for SiO2, Cr2O3 MgO
(Fig. 6c–e). Bulk rock structural hydroxyl contents show no relationship
with bulk rock chemistry. However, if we only consider xenoliths where
both pyroxenes have type 1 spectra, several correlations with geo-
chemical proxies might be revealed. There are 9 such lherzolite xeno-
liths among the studied NGVF samples (NMS138, NJS1302, NJS1304,
NJS1306, NJS1307, NFK0301, NFL1316, NMC1322, NBN0302A), al-
though these spectrum types are the most prevalent worldwide (Falus
et al., 2008; Demouchy et al., 2015; Pintér et al., 2015; Aradi et al.,
2017). The most obvious relationships exhibited by these xenoliths are
between their bulk structural hydroxyl content and basaltic major ele-
ments (Al2O3, FeO, CaO, Na2O), as well as HREE concentrations

L. Patkó et al. Chemical Geology 507 (2019) 23–41

32



(Fig. 7).
In conclusion, it appears that only pyroxenes with type 1 spectra are

likely to represent ‘original’ or ‘equilibrium’ conditions after partial
melting or metasomatism (presumably under higher water activity). In
this case it is anticipated that structural hydroxyl contents must show
some correlation with geochemical variables. In contrast, pyroxenes
with type 2 spectra may have equilibrated under lower water activity
triggered by continental extension, which resulted in the anomalous
infrared spectra and also lower structural hydroxyl content. In this
latter scenario, only the concentration and the mode of structural hy-
droxyl incorporation changes, however, other geochemical and petro-
logical features remain more or less the same. It is likely that sub-
sequent metasomatic events could gradually erase these infrared
signatures over geological times, resulting in the water content re-
turning to higher concentrations and the infrared spectra to the ‘more’
common type 1. This may be the reason why these signatures are only
preserved in the upper mantle of geologically young extensional basins,

which are almost immediately sampled by a subsequent alkaline ba-
saltic volcanic activity. In other areas, perhaps, where the extension is
older and more time elapses between the extension and the volcanism
bringing up the xenoliths, these signatures may be overwritten and,
therefore, will not be preserved. Note that these signatures are not
common in upper mantle xenoliths from other alkaline basaltic lo-
calities (Styrian Basin and Perşani Mts.) of the Pannonian Basin, where
the extension was not significant, and a considerable subduction related
flux favored the predominance of type 1 spectra, higher structural hy-
droxyl contents and more covariance with geochemical proxies (e.g.,
Falus et al. 2008; Aradi et al., 2017).

7.4. Possible explanations for the low structural hydroxyl contents and
anomalous infrared spectra

In the NGVF xenoliths, FTIR results reveal several characteristic
spectral features for NAMs:

Fig. 4. Partitioning of structural hydroxyl (expressed in H2O equivalent in ppm wt%) between coexisting clinopyroxene and orthopyroxene (Dcpx/opx). Trendlines
defining ‘normal’ range are from Xia et al. (2017). Data abbreviations and origin: NGVF - Nógrád-Gömör Volcanic Field (this study), SBVF - Styrian Basin Volcanic
Field (Aradi et al., 2017), PMVF - Perșani Mountains Volcanic Field (Falus et al., 2008).
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a) Although most of the stretching bands of structural hydroxyl on
FTIR spectra appear at well-known wavenumbers (Table 1), their
relative intensities are often anomalous. The most intense bands
appear only at lower wavenumbers (Fig. 2), whereas usually, the
bands at the highest wavenumber commonly are the most intense
ones (e.g. Pintér et al., 2015; Denis et al., 2015; Demouchy et al.,
2015; Aradi et al., 2017).

b) The structural hydroxyl content of all NAMs is extremely low
compared to those in other spinel facies upper mantle xenoliths from
elsewhere in the Pannonian Basin (Falus et al., 2008, Aradi et al.,
2017) or other off-craton occurrences (Peslier, 2010) (Fig. 3). His-
tograms of structural hydroxyl contents with respect to spectrum
types for orthopyroxenes (Fig. 2b) reveal that xenoliths with type 1
orthopyroxene spectra show a wider and more uniform distribution
of structural hydroxyl concentration, resulting in higher average
contents. In contrast, xenoliths with type 2a and 2b orthopyroxenes
have dominantly lower contents of structural hydroxyl (62 and 71%
of type 2a and 2b orthopyroxenes< 20 ppm, respectively). This
implies an apparent link between spectral features and structural
hydroxyl concentrations. This link is even more obvious for clin-
opyroxenes (Fig. 2c). Type 1 clinopyroxenes have a much wider
distribution of concentrations and the highest proportion of samples
with> 200 ppm structural hydroxyl (46%). In contrast, both type 2

clinopyroxenes have structural hydroxyl contents dominantly below
200 ppm (89 and 84%, respectively). Interestingly, for type 2a
clinopyroxenes, there are no xenoliths with structural hydroxyl
content below 50 ppm, whereas type 2b clinopyroxenes show
mainly these low values (38%) (Fig. 2c). In other words, the weaker
the band at ~3630 cm−1, the lower the structural hydroxyl con-
centration in clinopyroxene just like in case of type 1 clinopyrox-
enes. The same applies for orthopyroxenes with the band at
3600 cm−1.

c) The partition coefficient for structural hydroxyl between pyroxenes
is dominantly higher than the range defined as ‘normal’ by Xia et al.
(2017) (Fig. 4), which means that clinopyroxene contains sig-
nificantly more structural hydroxyl than the coexisting orthopyr-
oxene (D > 3.5).

d) The structural hydroxyl content and different physico-chemical
variables show limited or no correlation (Fig. 5; 6).

Below it will be discussed what mechanism(s) might lead to the
spectral characteristics of structural hydroxyl in upper mantle xenoliths
from the NGVF.

7.4.1. The role of lower water activity
7.4.1.1. Extension. The major difference between the NGVF and other

Fig. 5. Structural hydroxyl content (expressed in H2O equivalent in ppm wt%) compared with different physical and chemical variables of clinopyroxenes.
Equilibrium temperature (a), J-index (the volume-averaged integral of the squared orientation densities: for the sake of simplicity its value is 1 for randomly oriented
crystal and infinite for single crystals; Bunge, 1982) in clinopyroxenes (b), Na2O in clinopyroxenes (c) and Ce/Y ratio in clinopyroxenes (d) versus structural hydroxyl
content of clinopyroxenes. The equilibrium temperature and the geochemical data of the clinopyroxenes (Supplementary Table 2) are from Liptai et al. (2017). Note
that the quality of the J-index results (Supplementary Table 2) is not always excellent because of the restricted number of clinopyroxene grains within a xenolith.
Equilibrium temperature calculations are based on the method of Brey and Köhler (1990) modified by Nimis and Grütter (2010). Different spectrum types are
depicted with distinct symbols.
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marginal localities from where information on structural hydroxyl
contents of NAMs in upper mantle peridotites is available (i.e. Perşani
Mts. and Styrian Basin localities) is that these localities were affected by
subduction-related processes (e.g. Falus et al., 2008; Aradi et al., 2017)
and the extent of Miocene extension is only moderate (Horváth, 1993).
In the NGVF, however, the role of subduction is disputed (Szafián et al.,
1997) and the impact of Miocene extension is more significant

(Horváth, 1993). It is logical to assume that the more significant
extension (i.e. higher thinning factor and shallower lithosphere-
asthenosphere boundary depth) may be a factor in the formation of
these characteristic infrared features. During extension, a significant
portion of the upper mantle is placed under significantly lower
pressure, which affects both the asthenosphere and the lithospheric
mantle. The structural hydroxyl groups in NAMS presumably may reach

Fig. 6. Different physical-chemical variables versus the structural hydroxyl content (expressed in H2O equivalent in ppm wt%) of orthopyroxenes. Equilibrium
temperature (a), J-index in orthopyroxenes (b), FeO in orthopyroxenes (c), MgO in orthopyroxenes (d) and Yb in orthopyroxenes (e) versus structural hydroxyl
content of orthopyroxenes. The equilibrium temperature and the geochemical data of the orthopyroxenes (Supplementary Table 2) are from Liptai et al. (2017). Note
that the quality of the J-index results (Supplementary Table 2) are not always excellent because of the restricted number of orthopyroxene grains within a xenolith.
The equilibrium temperature calculations are based on the method of Brey and Köhler (1990) modified by Nimis and Grütter (2010). The different spectrum types
depicted with distinct symbols.
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new equilibrium under these changed physico-chemical conditions,
which results in lower structural hydroxyl contents and anomalous
infrared spectra (Fig. 8).

One potential factor could be the lowered activity of water at lower
pressures. The changing water activity (in the absence of percolating
fluids) changes the structural hydroxyl content of NAMs as the solubi-
lity of ‘water’ in NAMs is proportional to the activity of water (e.g. Bali
et al., 2008). This means that the lower activity of water lowers the
structural hydroxyl concentrations in NAMs if other physico-chemical
properties are unchanged. It has been recently shown for olivine that
different substitution mechanisms of structural hydroxyl may have
different dependency on water activity (e.g. Tollan et al., 2017). It
follows that changing the activity of water may not only increase or
lower the structural hydroxyl content but can also alter the relative
proportions of absorption bands (i.e. the infrared spectra will be
changed). The new equilibrium under lower activity (due to extension),
therefore may account for the lower structural hydroxyl contents and
the different contribution of various substitution mechanisms (Fig. 8).
Consequently, the observed signatures in the concentration and in-
corporation mechanism of structural hydroxyl groups may be char-
acteristic for young extensional areas, where the upper mantle experi-
enced significant uplift and thinning. The fact that the upper mantle
xenoliths from NGVF usually show these signatures, unlike those from
marginal areas of CPR (Falus et al., 2008; Aradi et al., 2017), implies

that the process(es) responsible affected the entire NGVF: extension
could clearly be such a process.

7.4.1.2. Possible role of ‘dry’ metasomatic agents. The Neogene evolution
of the CPR was accompanied by compositionally variable (silicic, calc-
alkaline and alkali mafic) volcanism all over the region (e.g. Szabó
et al., 1992). Among these magmatic events, the products of calc-
alkaline and alkali mafic activity appear in the NGVF (Fig. 1b) and
probably affected the characteristics of the local upper mantle. The
migration of melts can either modify or leave unchanged the structural
hydroxyl content of the upper mantle, depending on the water activity
in the melt agent. The low structural hydroxyl contents of the studied
xenoliths (Table 1) potentially calls for a migrating melt with low water
activity. However, based on the presence of almandine garnets in
andesite, Harangi et al. (2001) implied a water-rich melt, which
requires a hydrous mantle source for the calc-alkaline volcanism.
Furthermore, the evolution of such a melt, which would lower the
water activity, presumably happened only at crustal levels due to high-
pressure fractionation and contamination (Harangi et al., 2001). In
contrast, for the alkali basaltic volcanic activity, Zajacz et al. (2007)
proposed that the evolution of the assumed parental melt took place
well below the Moho. Dissolved volatiles, especially CO2, can also
significantly influence the water activity in melts. According to
experiments, the higher the CO2 content of a melt, the lower its

Fig. 7. Different physical-chemical variables versus the hydroxyl content (expressed in H2O equivalent in ppm wt%) of the bulk rock. Al2O3 in bulk rocks (a), Yb in
bulk rocks (b), equilibrium temperature (c) and FMQ (fayalite-magnetite-quartz) buffered oxygen fugacity (fO2) values (d) versus structural hydroxyl content of bulk
rocks. The equilibrium temperature and the geochemical data (Supplementary Table 2) are from Liptai et al. (2017). The equilibrium temperature calculations are
based on the method of Brey and Köhler (1990) modified by Nimis and Grütter (2010). The oxygen fugacity was calculated using the oxygen barometer of Ballhaus
et al. (1991) (Supplementary Table 2). Xenoliths with both type 1 clinopyroxenes and orthopyroxenes were highlighted using red triangles. Three xenoliths
(NMS1304, NFL1324, NFL1326) are not shown here due to their high bulk rock structural hydroxyl content. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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water activity (e.g. Sokol et al., 2013). The presence of abundant
primary CO2 fluid inclusions in metasomatized Nógrád-Gömör
xenoliths (Szabó and Bodnar, 1996, 1998) suggests that great
amounts of CO2 were previously dissolved in the melt, and therefore
its water activity was probably low. Indeed, the calculated CO2 contents
(1.27–1.94 wt%) are significantly higher than the measured H2O
concentrations (0.14–0.67 wt%) in silicate melt inclusions that
probably represent the metasomatic agent (Szabó et al., 1996).

The young alkali basaltic volcanic activity, which took place in the
last 7million years (Hurai et al., 2013) lead to the formation of maars,
diatremes, tuff cones, cinder/spatter cones and lava flows on the sur-
face (e.g., Konečný et al., 1995) and extensive mantle metasomatism
(Szabó and Taylor, 1994; Patkó et al., 2013; Liptai et al., 2017), and
significant underplating (Kovács et al., 2004; Zajacz et al., 2007) at
great depths is the best candidate for a ‘dry’ metasomatism. Since this is
the last magmatic event before the entrainment of the xenoliths it may
have overprinted the signatures of older episodes such as the calc-al-
kaline volcanism. The observed heterogeneities of structural hydroxyl
contents (Table 1) and variabilities in spectral features may also be

explained by the different stages of complete re-equilibration caused by
‘dry’ metasomatism (Fig. 8). However, note that the dimension of such
a ‘dry’ metasomatic event is restricted to the melt migration paths and
their close environment, and a regional effect is unlikely as it is sug-
gested by the distribution of wehrlite xenoliths (Patkó et al., 2013) or
long period magnetotellurics (Novák et al., 2014).

7.4.2. Temperature-driven annealing
Another possible mechanism for lowering the structural hydroxyl

content is temperature-driven annealing. At high pressures typical for
the upper mantle, significant structural hydroxyl loss from NAMs is
possible through high degrees of partial melting, which is triggered by
significantly elevated temperatures. There is, however, no evidence for
anomalously high degree of partial melting beneath the studied vol-
canic area (Liptai et al., 2017). Consequently, we exclude that the re-
latively low structural hydroxyl contents in pyroxenes are due to tem-
perature driven structural hydroxyl loss at upper mantle depth. The fact
that the activity of water increases with temperature at such pressures
(e.g. Bali et al., 2008) also makes this scenario rather unlikely. In

Fig. 8. Simplified cartoon on the possible pre-, syn- or post-eruptive processes, which modified the FTIR spectra characteristics and lowered the structural hydroxyl
contents in NAMs of Nógrád-Gömör upper mantle xenoliths. The depth of the local Moho and the lithosphere-asthenosphere boundary (LAB) are based on the results
of Klébesz et al. (2015). The distribution of the basalts is based on Jugovics (1971).
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addition, the effect of extension was probably more significant and
straightforward on the pressure, whereas temperature may have been
less capable to achieve the new equilibrium conditions (i.e. convective
heat transfer) relative to the almost ‘instant’ drop in pressure.

Lowering of the structural hydroxyl content related to elevated
temperatures could also occur in xenoliths while being carried by the
host magma during ascent. Peslier and Luhr (2006) pointed out that
xenoliths may lose significant proportions of their structural hydroxyl
content this way, especially in case of an alkali basalt host, which
moves more slowly than lamprophyre or kimberlite magmas (Kelley
and Wartho, 2000) (i.e. xenoliths spend more time at elevated tem-
peratures). The calculated ascent rate for the alkali basalt magma in the
NGVF is only 0.1ms−1 beneath the Moho, and 5ms−1 in the crust
(Szabó and Bodnar, 1996). For the reasons outlined above, the diffu-
sional loss of structural hydroxyl – especially in olivine, in which the
speed of diffusion is fastest – is suggested to happen at very shallow
depths or on the surface only, where the activity of water is sufficiently
low (Ferriss et al., 2016; Tian et al., 2017). The upper mantle xenoliths
entrained in other alkali basalts with probably similar ascent rates in
the CPR (i.e. Perşani Mts. and Styrian Basin) contain appreciable
amounts of structural hydroxyl. This fact makes it rather unlikely that
decrease in structural hydroxyl content during ascent could be the only
explanation for the dry olivines in the NGVF NAMs. Consequently,
another explanation should also be considered. In the NGVF, the alkali
basalt volcanism produced several volcanic edifices including maars,
diatremes, tuff cones, cinder/spatter cones and lava flows (Konečný
et al., 1995). The numerous slowly cooling lava flows built several
‘massive’ basalt plateaus (e.g. Medves Plateau; Fig. 1b), except at the
Jelšovec locality, where the host rock is pyroclastic, forming a maar.
Xenoliths from Jelšovec are the only samples in the NGVF that contain
detectable amounts of structural hydroxyl in olivines and higher con-
centration in other NAMs, and their structural hydroxyl contents are the
highest (Table 1). Accordingly, we suggest that the type of the host rock
(i.e. pyroclast vs. ‘massive’ lava flow) plays a significant role in mod-
ifying the structural hydroxyl content. This assumption is supported by
the fact that olivines carrying structural hydroxyl in upper mantle xe-
noliths from other volcanic fields of the CPR (i.e., Stryian Basin and
Perşani Mts.) are also hosted predominantly in pyroclastic successions
(Falus et al., 2008; Aradi et al., 2017). In conclusion, xenoliths in
pyroclastic rocks appear to preserve their ‘original’ structural hydroxyl
content better than those in lavas. This is due to the faster cooling rate
of pyroclastics compared to ‘massive’ lava flows where the temperature
could remain high enough for a longer period of time. Similar conclu-
sions also have been drawn by Lloyd et al. (2016) and Biró et al. (2016).
They found that clinopyroxene and quartz phenocrysts in different
volcanic formations show higher structural hydroxyl contents and are
closer to equilibrium with their host rocks in volcanic successions,
which went through rapid cooling after deposition (i.e. volcanic ash,
pyroclastic deposits and basal layers of ignimbrites). The time-span for
post-deposition cooling (weeks, maybe months) in most cases is only
enough to change the structural hydroxyl content in olivines, in which
the diffusion is fast (10−11–10−9m2/s at 1100 °C; Tian et al., 2017), but
not enough to trigger significant modification in the pyroxenes, in
which diffusion is slower (10−14–10−11m2/s at 1100 °C; Tian et al.,
2017). Hence, the low structural hydroxyl content in pyroxenes is un-
likely to have been reset during syn- and post-eruption periods, but
more likely is related to the extension in the NGVF as outlined above. In
our interpretation, the olivines are highly sensitive indicators of syn-
and post-eruptive loss of structural hydroxyl (Fig. 8). Consequently, the
presence of ‘dry’ olivines in the investigated upper mantle xenoliths
may indicate that considerable loss of hydrogen may have taken place
during the post-depositional slow cooling of lava flows in the NGVF. To
our knowledge, our study is among the first ones to report that post-
eruptive thermal history of xenoliths in their host rocks could influence
the structural hydroxyl contents of NAMs, especially that of olivine.
Note that similar conclusions were drawn in case of the fast-diffusing Li

based on upper mantle xenolith constituent separates (Ionov and Seitz,
2008). This suggests that before collecting suitable upper mantle xe-
noliths for estimating the fast-diffusing element contents including
hydrogen, it is important to consider the physical volcanological fea-
tures and select parts of volcanic formations/successions, which are
characterized by fast cooling rates (fall deposits, basal layers of pyr-
oclasts etc.).

7.4.3. Oxidation
Theoretically, oxidation caused by the host magma can also lead to

low structural hydroxyl contents in xenoliths (Peslier et al., 2002). The
oxygen fugacity (fO2) values of the NGVF xenoliths compared to the
FMQ (fayalite-magnetite-quartz) buffer, calculated using the oxygen
barometer of Ballhaus et al. (1991), are between −0.8 ± 0.7 log units
(with an average of ~−0.2) (Supplementary Table 2), which is within
the range of −1.5 to +1.5 log units defined as typical for peridotite
xenoliths (Wood et al., 1990). The Fe2+ and Fe3+ distribution for spinel
was calculated based on the spinel stoichiometry. The fO2 values show
no relationship with the structural hydroxyl contents (Fig. 7d). This
implies that oxidation-related modification of structural hydroxyl con-
tents probably did not occur in the upper mantle nor during entrain-
ment in the host magma.

Degassing can increase the fO2 of the magma if H2O and CO2 are the
dominant volatile elements of it (Brounce et al., 2017), hence pyroclasts
usually represent more oxidizing environments compared to lava rocks
in basaltic systems. Furthermore, the generation of the Jelšovec maar is
a result of phreatic/phreatomagmatic activity (Konečný et al., 1995),
which also suggests oxidative circumstances in its formation. Conse-
quently, if oxidation had a significant effect on the structural hydroxyl
concentration, then the Jelšovec xenoliths, the only ones hosted in
pyroclastics in the study area, should be the driest. In contrast, the
Jelšovec xenoliths have the highest structural hydroxyl contents
(Table 1). These observations suggest that the late oxidation of the host
rock may have no significant effect on the structural hydroxyl content
of the NGVF xenoliths.

8. Summary

We carried out a detailed FTIR study on the NAMs of 63 upper
mantle xenoliths from the NGVF with well-defined petrography, geo-
chemistry and physical characteristics. The FTIR results reveal several
unusual features including anomalous spectra of upper mantle silicates,
extremely low contents of structural hydroxyl and widely variable
partition coefficients between pyroxenes. Moreover, the structural hy-
droxyl contents show limited or no correlation with different geo-
chemical (e.g. major and trace elements) and physical (e.g. fabric
strength) variables. All these observations can be interpreted as results
of lowered water activity due to young extension (reflected especially in
pyroxenes). In addition, interaction of a metasomatic agent having low
water activity cannot be ruled out. In our interpretation, the extremely
‘dry’ nature of olivines, relative to other marginal localities in the
Carpathian-Pannonian region, may be attributed to the slow cooling of
‘massive’ basaltic lava flows enclosing the xenoliths. The very slow
post-depositional cooling could in these cases have led to significant
loss of structural hydroxyl from olivine, in which the diffusion of
structural hydroxyl is rapid compared to pyroxenes.

The novel applications of our study include the introduction of the
diagnostic features (low structural hydroxyl content, anomalous parti-
tioning between pyroxenes and anomalous relative absorbances of
characteristic bands in pyroxenes), which can be used to detect re-
equilibration under lower water activity in young extensional tectonic
settings. Dry olivines could be used as an indicator that significant post-
depositional loss of structural hydroxyl occurred in slowly cooling
massive lava flows. This experience could help in selecting more sui-
table volcanic formations (pyroclasts) for obtaining representative
structural hydroxyl content of NAMs for the upper mantle.
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