Effects of long-range aerosol transport ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic
Author(s) :
Coopman, Quentin [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Garrett, Timothy J. [Auteur]
Riedi, Jérôme [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Eckhardt, Sabine [Auteur]
Stohl, Andreas [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Garrett, Timothy J. [Auteur]
Riedi, Jérôme [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Eckhardt, Sabine [Auteur]
Stohl, Andreas [Auteur]
Journal title :
Atmospheric Chemistry and Physics
Abbreviated title :
Atmos. Chem. Phys.
Volume number :
16
Pages :
4661-4674
Publisher :
Copernicus GmbH
Publication date :
2016-04-14
ISSN :
1680-7324
HAL domain(s) :
Planète et Univers [physics]/Océan, Atmosphère
English abstract : [en]
The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to the region. Satellite, tracer transport model, and meteorological data sets are used here to determine a net ...
Show more >The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to the region. Satellite, tracer transport model, and meteorological data sets are used here to determine a net aerosol–cloud interaction (ACInet) parameter that expresses the ratio of relative changes in cloud microphysical properties to relative variations in pollution concentrations while accounting for dry or wet scavenging of aerosols en route to the Arctic. For a period between 2008 and 2010, ACInet is calculated as a function of the cloud liquid water path, temperature, altitude, specific humidity, and lower tropospheric stability. For all data, ACInet averages 0.12 ± 0.02 for cloud-droplet effective radius and 0.16 ± 0.02 for cloud optical depth. It increases with specific humidity and lower tropospheric stability and is highest when pollution concentrations are low. Carefully controlling for meteorological conditions we find that the liquid water path of arctic clouds does not respond strongly to aerosols within pollution plumes. Or, not stratifying the data according to meteorological state can lead to artificially exaggerated calculations of the magnitude of the impacts of pollution on arctic clouds.Show less >
Show more >The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to the region. Satellite, tracer transport model, and meteorological data sets are used here to determine a net aerosol–cloud interaction (ACInet) parameter that expresses the ratio of relative changes in cloud microphysical properties to relative variations in pollution concentrations while accounting for dry or wet scavenging of aerosols en route to the Arctic. For a period between 2008 and 2010, ACInet is calculated as a function of the cloud liquid water path, temperature, altitude, specific humidity, and lower tropospheric stability. For all data, ACInet averages 0.12 ± 0.02 for cloud-droplet effective radius and 0.16 ± 0.02 for cloud optical depth. It increases with specific humidity and lower tropospheric stability and is highest when pollution concentrations are low. Carefully controlling for meteorological conditions we find that the liquid water path of arctic clouds does not respond strongly to aerosols within pollution plumes. Or, not stratifying the data according to meteorological state can lead to artificially exaggerated calculations of the magnitude of the impacts of pollution on arctic clouds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Interactions Rayonnement Nuages (IRN)
Submission date :
2024-01-09T17:14:33Z
2024-01-09T18:04:22Z
2024-01-09T18:04:22Z
Files
- acp-16-4661-2016.pdf
- Version éditeur
- Open access
- Main article
- Access the document