A meshless method for the numerical ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A meshless method for the numerical computation of the solution of steady Burgers-type equations
Auteur(s) :
Bouhamidi, Abderrahman [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Hached, Mustapha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Hached, Mustapha [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Jbilou, Khalide [Auteur]
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville [LMPA]
Titre de la revue :
Applied Numerical Mathematics: an IMACS journal
Pagination :
95-110
Éditeur :
Elsevier
Date de publication :
2013-12
ISSN :
0168-9274
Mot(s)-clé(s) en anglais :
Viscous Burgers equation
Meshless method
Global GMRES
Newtonʼs method
Krylov projection methods
Radial basis functions
Numerical analysis
Meshless method
Global GMRES
Newtonʼs method
Krylov projection methods
Radial basis functions
Numerical analysis
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate ...
Lire la suite >In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate spline approximation, leading to a large-scale nonlinear matrix equation. The main difficulty of the proposed method is the numerical computation of a solution of the derived nonlinear matrix equation. We will show how to combine Newtonʼs method with some matrix Krylov subspace techniques such as the global GMRES to solve these nonlinear problems. Numerical examples are given to illustrate the proposed method.Lire moins >
Lire la suite >In this paper, we discuss a meshless method for solving steady Burgers-type equations with Dirichlet boundary conditions. The numerical approximation of the solution in the given domain is obtained by using thin plate spline approximation, leading to a large-scale nonlinear matrix equation. The main difficulty of the proposed method is the numerical computation of a solution of the derived nonlinear matrix equation. We will show how to combine Newtonʼs method with some matrix Krylov subspace techniques such as the global GMRES to solve these nonlinear problems. Numerical examples are given to illustrate the proposed method.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- fulltext.pdf
- Accès libre
- Accéder au document