Antisymmetric paramodular forms of weight 3
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Antisymmetric paramodular forms of weight 3
Auteur(s) :
Titre de la revue :
Sbornik: Mathematics
Pagination :
1702-1723
Éditeur :
Turpion
Date de publication :
2019-12-01
ISSN :
1064-5616
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Abstract The problem of the construction of antisymmetric paramodular forms of canonical weight has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification ...
Lire la suite >Abstract The problem of the construction of antisymmetric paramodular forms of canonical weight has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to -polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block. Bibliography: 32 titles.Lire moins >
Lire la suite >Abstract The problem of the construction of antisymmetric paramodular forms of canonical weight has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to -polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block. Bibliography: 32 titles.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1906.09869
- Accès libre
- Accéder au document