Hopf crossed module (co)algebras
Document type :
Pré-publication ou Document de travail
Title :
Hopf crossed module (co)algebras
Author(s) :
Sozer, Kursat [Auteur]
McMaster University [Hamilton, Ontario]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
McMaster University [Hamilton, Ontario]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Publication date :
2023
English keyword(s) :
Quantum Algebra (math.QA)
FOS: Mathematics
16T05
18M05
18A50
18G45
FOS: Mathematics
16T05
18M05
18A50
18G45
HAL domain(s) :
Mathématiques [math]/Algèbres quantiques [math.QA]
English abstract : [en]
Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories ...
Show more >Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories of representations are monoidal and $χ$-graded (meaning that both objects and morphisms have degrees which are related via $χ$).Show less >
Show more >Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories of representations are monoidal and $χ$-graded (meaning that both objects and morphisms have degrees which are related via $χ$).Show less >
Language :
Anglais
Collections :
Source :
Files
- 2305.15485
- Open access
- Access the document