The Feldman-Moore, Glimm-Effros, and ...
Document type :
Pré-publication ou Document de travail
Title :
The Feldman-Moore, Glimm-Effros, and Lusin-Novikov theorems over quotients
Author(s) :
De Rancourt, Noé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Universität Wien = University of Vienna
Univerzita Karlova [Praha, Česká republika] = Charles University [Prague, Czech Republic] [UK]
Miller, B. D. [Auteur]
Universität Wien = University of Vienna
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Universität Wien = University of Vienna
Univerzita Karlova [Praha, Česká republika] = Charles University [Prague, Czech Republic] [UK]
Miller, B. D. [Auteur]
Universität Wien = University of Vienna
Publication date :
2021-05-11
English keyword(s) :
Feldman-Moore
Glimm-Effros
Lusin-Novikov
Glimm-Effros
Lusin-Novikov
HAL domain(s) :
Mathématiques [math]/Logique [math.LO]
English abstract : [en]
We establish generalizations of the Feldman-Moore theorem, the Glimm-Effros dichotomy, and the Lusin-Novikov uniformization theorem from Polish spaces to their quotients by Borel orbit equivalence relations.We establish generalizations of the Feldman-Moore theorem, the Glimm-Effros dichotomy, and the Lusin-Novikov uniformization theorem from Polish spaces to their quotients by Borel orbit equivalence relations.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- 2105.05374.pdf
- Open access
- Access the document
- 2105.05374
- Open access
- Access the document