Local Banach-space dichotomies and ergodic spaces
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Local Banach-space dichotomies and ergodic spaces
Author(s) :
Cuellar Carrera, Wilson [Auteur]
Universidade de São Paulo = University of São Paulo [USP]
De Rancourt, Noé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Univerzita Karlova [Praha, Česká republika] = Charles University [Prague, Czech Republic] [UK]
Universität Wien = University of Vienna
Département de Mathématiques et Applications - ENS-PSL [DMA]
Ferenczi, Valentin [Auteur]
Universidade de São Paulo = University of São Paulo [USP]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Universidade de São Paulo = University of São Paulo [USP]
De Rancourt, Noé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Univerzita Karlova [Praha, Česká republika] = Charles University [Prague, Czech Republic] [UK]
Universität Wien = University of Vienna
Département de Mathématiques et Applications - ENS-PSL [DMA]
Ferenczi, Valentin [Auteur]
Universidade de São Paulo = University of São Paulo [USP]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Journal title :
Journal of the European Mathematical Society
Pages :
3537-3598
Publisher :
European Mathematical Society
Publication date :
2022-09-19
ISSN :
1435-9855
English keyword(s) :
Ergodic Banach spaces
Ramsey theory
Banach-space dichotomies
Non-Hilbertian spaces
Minimal Banach spaces
Hereditarily indecomposable Banach spaces
Ramsey theory
Banach-space dichotomies
Non-Hilbertian spaces
Minimal Banach spaces
Hereditarily indecomposable Banach spaces
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Combinatoire [math.CO]
Mathématiques [math]/Logique [math.LO]
Mathématiques [math]/Combinatoire [math.CO]
Mathématiques [math]/Logique [math.LO]
English abstract : [en]
We prove a local version of Gowers' Ramsey-type theorem [25], as well as local versions both of the Banach space first dichotomy (the "unconditional/HI" dichotomy) of Gowers [25] and of the third dichotomy (the "minimal/tight" ...
Show more >We prove a local version of Gowers' Ramsey-type theorem [25], as well as local versions both of the Banach space first dichotomy (the "unconditional/HI" dichotomy) of Gowers [25] and of the third dichotomy (the "minimal/tight" dichotomy) due to Ferenczi-Rosendal [22]. This means that we obtain versions of these dichotomies restricted to certain families of subspaces called D-families, of which several concrete examples are given. As a main example, non-Hilbertian spaces form D-families; therefore versions of the above properties for non-Hilbertian spaces appear in new Banach space dichotomies. As a consequence we obtain new information on the number of subspaces of non-Hilbertian Banach spaces, making some progress towards the "ergodic" conjecture of Ferenczi-Rosendal and towards a question of Johnson.Show less >
Show more >We prove a local version of Gowers' Ramsey-type theorem [25], as well as local versions both of the Banach space first dichotomy (the "unconditional/HI" dichotomy) of Gowers [25] and of the third dichotomy (the "minimal/tight" dichotomy) due to Ferenczi-Rosendal [22]. This means that we obtain versions of these dichotomies restricted to certain families of subspaces called D-families, of which several concrete examples are given. As a main example, non-Hilbertian spaces form D-families; therefore versions of the above properties for non-Hilbertian spaces appear in new Banach space dichotomies. As a consequence we obtain new information on the number of subspaces of non-Hilbertian Banach spaces, making some progress towards the "ergodic" conjecture of Ferenczi-Rosendal and towards a question of Johnson.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- 2005.06458.pdf
- Open access
- Access the document
- 2005.06458
- Open access
- Access the document
- document
- Open access
- Access the document
- 2005.06458.pdf
- Open access
- Access the document