WEIGHTED HOLOMORPHIC DIRICHLET SERIES AND ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
WEIGHTED HOLOMORPHIC DIRICHLET SERIES AND COMPOSITION OPERATORS WITH POLYNOMIAL SYMBOLS
Auteur(s) :
Mau, Camille [Auteur]
Nanayang Technological University [NTU]
Fricain, Emmanuel [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Nanayang Technological University [NTU]
Fricain, Emmanuel [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Mathematica Scandinavica
Pagination :
109--146
Date de publication :
2022
Mot(s)-clé(s) en anglais :
Weighted holomorphic Dirichlet series
composition operator
cyclicity
composition operator
cyclicity
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case ...
Lire la suite >In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\ell^2$ is cyclic. ContentsLire moins >
Lire la suite >In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\ell^2$ is cyclic. ContentsLire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Hblam_Manuscript-Final-mathscan-26-06-2021.pdf
- Accès libre
- Accéder au document