A trade-off for covalent and intercalation ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
A trade-off for covalent and intercalation binding modes: a case study for Copper (II) ions and singly modified DNA nucleoside
Auteur(s) :
Mouesca, Jean-Marie [Auteur]
Université Grenoble Alpes [2016-2019] [UGA [2016-2019]]
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé [SYMMES]
Ahouari, Hania [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Dantu, Sarath Chandra [Auteur]
Sicoli, Giuseppe [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Université Grenoble Alpes [2016-2019] [UGA [2016-2019]]
SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé [SYMMES]
Ahouari, Hania [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Dantu, Sarath Chandra [Auteur]
Sicoli, Giuseppe [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Titre de la revue :
Scientific Reports
Numéro :
9
Date de publication :
2019
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Selective binding to nucleic acids and, more generally, to biopolymers, very often requires at a minimum the presence of specific functionalities and precise spatial arrangement. DNA can fold into defined 3D structures ...
Lire la suite >Selective binding to nucleic acids and, more generally, to biopolymers, very often requires at a minimum the presence of specific functionalities and precise spatial arrangement. DNA can fold into defined 3D structures upon binding to metal centers and/or lanthanides. Binding efficiency can be boosted by modified nucleosides incorporated into DNA sequences. In this work the high selectivity of modified nucleosides towards copper (II) ions, when used in the monomeric form, is unexpectedly and drastically reduced upon being covalently attached to the DNA sequence in single-site scenario. Surprisingly, such selectivity is partially retained upon non-covalent (i.e. intercalation) mixture formed by native DNA duplex and a nucleoside in the monomeric form. Exploiting the electron spin properties of such different and rich binding mode scenarios, 1D/2D pulsed EPR experiments have been used and tailored to differentiate among the different modes. An unusual correlation of dispersion of hyperfine couplings and strength of the binding mode(s) is described.Lire moins >
Lire la suite >Selective binding to nucleic acids and, more generally, to biopolymers, very often requires at a minimum the presence of specific functionalities and precise spatial arrangement. DNA can fold into defined 3D structures upon binding to metal centers and/or lanthanides. Binding efficiency can be boosted by modified nucleosides incorporated into DNA sequences. In this work the high selectivity of modified nucleosides towards copper (II) ions, when used in the monomeric form, is unexpectedly and drastically reduced upon being covalently attached to the DNA sequence in single-site scenario. Surprisingly, such selectivity is partially retained upon non-covalent (i.e. intercalation) mixture formed by native DNA duplex and a nucleoside in the monomeric form. Exploiting the electron spin properties of such different and rich binding mode scenarios, 1D/2D pulsed EPR experiments have been used and tailored to differentiate among the different modes. An unusual correlation of dispersion of hyperfine couplings and strength of the binding mode(s) is described.Lire moins >
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Université de Lille
CNRS
Université de Lille
Collections :
Équipe(s) de recherche :
Propriétés magnéto structurales des matériaux (PMSM)
Date de dépôt :
2024-02-21T17:11:57Z
2024-02-23T13:32:35Z
2024-02-23T13:32:35Z
Fichiers
- s41598-019-48935-2.pdf
- Version éditeur
- Accès libre
- Accéder au document