Photoactivity Properties of ZnO-Doped ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Photoactivity Properties of ZnO-Doped Erbium: Synthesis, Characterization, and EPR Spectroscopy Investigation
Author(s) :
Bedhouche, Fatiha [Auteur]
Soualah, Ahcène [Auteur]
Djouadi, D. [Auteur]
Ahouari, Hania [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ben Tayeb Meziane, Karima [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Soualah, Ahcène [Auteur]
Djouadi, D. [Auteur]
Ahouari, Hania [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ben Tayeb Meziane, Karima [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Journal title :
Water Air Soil Pollut.
Abbreviated title :
Water Air Soil Pollut.
Volume number :
235
Pages :
-
Publication date :
2024-01-20
ISSN :
0049-6979
English keyword(s) :
Sol-gel process
Supercritical solvent
UV light
Photocatalysis
Methylene blue (MB)
Er-doped ZnO
Supercritical solvent
UV light
Photocatalysis
Methylene blue (MB)
Er-doped ZnO
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Pure ZnO and erbium (1, 3, and 5 at. %)-doped ZnO nanoparticles aerogels were synthesized by sol-gel in supercritical drying conditions of isopropanol. The aim of this work is to study the effect of erbium ions on structural, ...
Show more >Pure ZnO and erbium (1, 3, and 5 at. %)-doped ZnO nanoparticles aerogels were synthesized by sol-gel in supercritical drying conditions of isopropanol. The aim of this work is to study the effect of erbium ions on structural, optical, and photocatalytic properties of ZnO aerogels using various physicochemical techniques. The photocatalytic degradation of methylene blue (MB) under UV light irradiation is significantly enhanced with the introduction of Er³⁺ ions into the structure. The complete degradation of MB (99%) was obtained with an optimum of 1 and 3 at. % of erbium after 100 min of UV irradiation. These results are in good agreement with those obtained by electron paramagnetic resonance (EPR) spectroscopy spin trapping measurements where the highest amount of hydroxyl radicals •OH, responsible for the degradation of methylene blue, is observed with ZnO doped with 1 and 3 at. % erbium. A decrease of the electron-hole pairs recombination rate was confirmed by photoluminescence (PL) analyses in the Er-doped samples, due to the high interactions between Er³⁺ ions which lead to an increase of the non-radiative process originated from PL quenching. Graphical abstractShow less >
Show more >Pure ZnO and erbium (1, 3, and 5 at. %)-doped ZnO nanoparticles aerogels were synthesized by sol-gel in supercritical drying conditions of isopropanol. The aim of this work is to study the effect of erbium ions on structural, optical, and photocatalytic properties of ZnO aerogels using various physicochemical techniques. The photocatalytic degradation of methylene blue (MB) under UV light irradiation is significantly enhanced with the introduction of Er³⁺ ions into the structure. The complete degradation of MB (99%) was obtained with an optimum of 1 and 3 at. % of erbium after 100 min of UV irradiation. These results are in good agreement with those obtained by electron paramagnetic resonance (EPR) spectroscopy spin trapping measurements where the highest amount of hydroxyl radicals •OH, responsible for the degradation of methylene blue, is observed with ZnO doped with 1 and 3 at. % erbium. A decrease of the electron-hole pairs recombination rate was confirmed by photoluminescence (PL) analyses in the Er-doped samples, due to the high interactions between Er³⁺ ions which lead to an increase of the non-radiative process originated from PL quenching. Graphical abstractShow less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Propriétés magnéto structurales des matériaux (PMSM)
Submission date :
2024-02-28T23:56:47Z
2024-03-22T10:19:13Z
2024-03-22T10:19:13Z