Neural Architecture Tuning: A BO-Powered NAS Tool
Type de document :
Communication dans un congrès avec actes
Titre :
Neural Architecture Tuning: A BO-Powered NAS Tool
Auteur(s) :
Ouertatani, Houssem [Auteur]
IRT SystemX
Inria Lille - Nord Europe
Optimisation de grande taille et calcul large échelle [BONUS]
Maxim, Cristian [Auteur]
IRT SystemX
Niar, Smail [Auteur]
Université Polytechnique Hauts-de-France [UPHF]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Talbi, El-Ghazali [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
IRT SystemX
Inria Lille - Nord Europe
Optimisation de grande taille et calcul large échelle [BONUS]
Maxim, Cristian [Auteur]
IRT SystemX
Niar, Smail [Auteur]
Université Polytechnique Hauts-de-France [UPHF]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Talbi, El-Ghazali [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
International Conference in Optimization and Learning (OLA)
Ville :
Dubrovnik
Pays :
Croatie
Date de début de la manifestation scientifique :
2024-05-13
Mot(s)-clé(s) en anglais :
Neural Architecture Search
Bayesian Optimization
Custom search space
Multi-fidelity BO
Bayesian Optimization
Custom search space
Multi-fidelity BO
Discipline(s) HAL :
Informatique [cs]
Résumé en anglais : [en]
Neural Architecture Search (NAS) consists of applying anoptimization technique to find the best performing architecture(s) in adefined search space, with regard to an objective function. The practicalimplementation of NAS ...
Lire la suite >Neural Architecture Search (NAS) consists of applying anoptimization technique to find the best performing architecture(s) in adefined search space, with regard to an objective function. The practicalimplementation of NAS currently carries certain limitations, includingprohibitive costs with the need for a large number of evaluations, an inflexibilityin defining the search space by often having to select from alimited set of possible design components, and a difficulty of integratingexisting architecture code by requiring a specialized design languagefor search space specification. We propose a simplified search tool, withefficiency in the number of evaluations needed to achieve good results,and flexibility by design, allowing for an easy and open definition of thesearch space and objective function. Interoperability with existing codeor newly released architectures from the literature allows the user toquickly and easily tune architectures to produce well-performing solutionstailor-made for particular use cases. We practically apply this toolto certain vision search spaces, and showcase its effectiveness.Lire moins >
Lire la suite >Neural Architecture Search (NAS) consists of applying anoptimization technique to find the best performing architecture(s) in adefined search space, with regard to an objective function. The practicalimplementation of NAS currently carries certain limitations, includingprohibitive costs with the need for a large number of evaluations, an inflexibilityin defining the search space by often having to select from alimited set of possible design components, and a difficulty of integratingexisting architecture code by requiring a specialized design languagefor search space specification. We propose a simplified search tool, withefficiency in the number of evaluations needed to achieve good results,and flexibility by design, allowing for an easy and open definition of thesearch space and objective function. Interoperability with existing codeor newly released architectures from the literature allows the user toquickly and easily tune architectures to produce well-performing solutionstailor-made for particular use cases. We practically apply this toolto certain vision search spaces, and showcase its effectiveness.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- ola_preprint.pdf
- Accès libre
- Accéder au document