Linking Intrinsic Difficulty and Regret ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Linking Intrinsic Difficulty and Regret to Properties of Multivariate Gaussians in Image Steganalysis
Auteur(s) :
Mallet, Antoine [Auteur]
Université de Technologie de Troyes [UTT]
Cogranne, Rémi [Auteur]
Université de Technologie de Troyes [UTT]
Bas, Patrick [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Technologie de Troyes [UTT]
Cogranne, Rémi [Auteur]
Université de Technologie de Troyes [UTT]
Bas, Patrick [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
12th ACM Workshop on Information Hiding and Multimedia Security (ACM IH&MMSEC'24)
Ville :
Baiona
Pays :
Espagne
Date de début de la manifestation scientifique :
2024-06-24
Titre de l’ouvrage :
Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security (IHMMSec ’24)
Éditeur :
ACM
Date de publication :
2024
Mot(s)-clé(s) en anglais :
steganalysis
cover-source mismatch
image processing pipeline
fingerprint
Forensics
cover-source mismatch
image processing pipeline
fingerprint
Forensics
Discipline(s) HAL :
Informatique [cs]/Multimédia [cs.MM]
Résumé en anglais : [en]
This paper deals with the Cover-Source Mismatch (CSM) problem faced in operational steganalysis. Based on a multivariate Gaussian model of the distribution of the noise contained in natural images, it provides proxies for ...
Lire la suite >This paper deals with the Cover-Source Mismatch (CSM) problem faced in operational steganalysis. Based on a multivariate Gaussian model of the distribution of the noise contained in natural images, it provides proxies for the two important empirical measures of CSM: intrinsic difficulty and regret. The former can be modeled with the determinant of the covariance matrix of the noise present in an image. The latter can be predicted with a modified Kullback-Leibler divergence between the distribution of the noises of images coming from different cover-sources. We first recall the reasoning behind the multivariate Gaussian model of the noise, and detail how to compute the statistic of the distribution of the noise. Then, our proposed models are compared to empirical data with a specifically designed cover-source generation process. For both quantities, very high correlation coefficients between the model and the observations are obtained. Finally, realistic cover-sources are used to further illustrate the relevance of our model.Lire moins >
Lire la suite >This paper deals with the Cover-Source Mismatch (CSM) problem faced in operational steganalysis. Based on a multivariate Gaussian model of the distribution of the noise contained in natural images, it provides proxies for the two important empirical measures of CSM: intrinsic difficulty and regret. The former can be modeled with the determinant of the covariance matrix of the noise present in an image. The latter can be predicted with a modified Kullback-Leibler divergence between the distribution of the noises of images coming from different cover-sources. We first recall the reasoning behind the multivariate Gaussian model of the noise, and detail how to compute the statistic of the distribution of the noise. Then, our proposed models are compared to empirical data with a specifically designed cover-source generation process. For both quantities, very high correlation coefficients between the model and the observations are obtained. Finally, realistic cover-sources are used to further illustrate the relevance of our model.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- main_copy.pdf
- Accès libre
- Accéder au document