Preparation and characterization of Ni-doped ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Preparation and characterization of Ni-doped ZnO-SnO2 nanocomposites: Application in photocatalysis
Auteur(s) :
Ben Ali, Monaam [Auteur]
Barka-Bouaifel, Fatiha [Auteur]
Sieber, Brigitte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Elhouichet, Habib [Auteur]
Addad, Ahmed [Auteur]
Boussekey, Luc [Auteur]
Férid, Mokhtar [Auteur]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Barka-Bouaifel, Fatiha [Auteur]
Sieber, Brigitte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Elhouichet, Habib [Auteur]
Addad, Ahmed [Auteur]
Boussekey, Luc [Auteur]
Férid, Mokhtar [Auteur]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Superlattices and Microstructures
Numéro :
91
Pagination :
225-237
Éditeur :
Elsevier
Date de publication :
2016
ISSN :
0749-6036
Mot(s)-clé(s) en anglais :
Hydrothermal synthesis
Ni2+ doping
Photocatalysis
ZnO nanoparticles
ZnO-SnO2 nanocomposites
Ni2+ doping
Photocatalysis
ZnO nanoparticles
ZnO-SnO2 nanocomposites
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
The paper reports on the synthesis of nickel-doped ZnO-SnO<sub>2</sub> nanocomposites with a molar ratio Zn:Sn of 2:1 using the hydrothermal method followed by calcination at 700 °C. The resulting nanocomposites were ...
Lire la suite >The paper reports on the synthesis of nickel-doped ZnO-SnO<sub>2</sub> nanocomposites with a molar ratio Zn:Sn of 2:1 using the hydrothermal method followed by calcination at 700 °C. The resulting nanocomposites were characterized using X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Energy-dispersive X-ray spectroscopy (EDX). The results revealed that the Ni/ZnO-SnO<sub>2</sub> material consists of aggregated cassiterite SnO2 and wurtzite ZnO nanoparticles (NPs) with a size ranging from 14 to 40 nm. Furthermore, they show that Ni adding induces a dominant effect on the optical, structural and morphological properties of ZnO-SnO<sub>2</sub> NPs. The photocatalytic behavior of the synthesized nanocomposites is investigated using rhodamine B (RhB) as model organic pollutant. A maximum degradation efficiency of 96% is achieved under visible light irradiation. While nickel doping did not enhance the photocatalytic activity of ZnO-SnO<sub>2</sub> NPs, the photocatalytic performance of Ni/ZnO-SnO<sub>2</sub> NPs is much higher than that of Ni-doped ZnO NPs. The photodegradation mechanism is believed to occur through photosensitization.Lire moins >
Lire la suite >The paper reports on the synthesis of nickel-doped ZnO-SnO<sub>2</sub> nanocomposites with a molar ratio Zn:Sn of 2:1 using the hydrothermal method followed by calcination at 700 °C. The resulting nanocomposites were characterized using X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Energy-dispersive X-ray spectroscopy (EDX). The results revealed that the Ni/ZnO-SnO<sub>2</sub> material consists of aggregated cassiterite SnO2 and wurtzite ZnO nanoparticles (NPs) with a size ranging from 14 to 40 nm. Furthermore, they show that Ni adding induces a dominant effect on the optical, structural and morphological properties of ZnO-SnO<sub>2</sub> NPs. The photocatalytic behavior of the synthesized nanocomposites is investigated using rhodamine B (RhB) as model organic pollutant. A maximum degradation efficiency of 96% is achieved under visible light irradiation. While nickel doping did not enhance the photocatalytic activity of ZnO-SnO<sub>2</sub> NPs, the photocatalytic performance of Ni/ZnO-SnO<sub>2</sub> NPs is much higher than that of Ni-doped ZnO NPs. The photodegradation mechanism is believed to occur through photosensitization.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ISEN
Univ. Valenciennes
ENSCL
CNRS
INRA
Institut Catholique Lille
Centrale Lille
ISEN
Univ. Valenciennes
ENSCL
CNRS
INRA
Institut Catholique Lille
Centrale Lille
Collections :
Date de dépôt :
2019-05-16T17:04:24Z