Dynamical-VAE-based Hindsight to Learn the ...
Document type :
Pré-publication ou Document de travail
Title :
Dynamical-VAE-based Hindsight to Learn the Causal Dynamics of Factored-POMDPs
Author(s) :
Han, Chao [Auteur]
University Hospital LMU Munich
Basu, Debabrota [Auteur]
Centrale Lille
Université de Lille
Inria Lille - Nord Europe
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Scool [Scool]
Mangan, Michael [Auteur]
University of Sheffield [Sheffield]
Vasilaki, Eleni [Auteur]
University of Sheffield [Sheffield]
Gilra, Aditya [Auteur]
Centrum Wiskunde & Informatica [CWI]
University Hospital LMU Munich
Basu, Debabrota [Auteur]
Centrale Lille
Université de Lille
Inria Lille - Nord Europe
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Scool [Scool]
Mangan, Michael [Auteur]
University of Sheffield [Sheffield]
Vasilaki, Eleni [Auteur]
University of Sheffield [Sheffield]
Gilra, Aditya [Auteur]
Centrum Wiskunde & Informatica [CWI]
Publication date :
2024-11-12
English keyword(s) :
Reinforcement Leaning RL
Partially observable Markov decision process POMDP
Factored Partially Observable Markov Decision Process FPOMDP
Causal Inference
Variation autoencoder
Causal structure learning
Dynamical system
Partially observable Markov decision process POMDP
Factored Partially Observable Markov Decision Process FPOMDP
Causal Inference
Variation autoencoder
Causal structure learning
Dynamical system
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Systèmes et contrôle [cs.SY]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Systèmes et contrôle [cs.SY]
Mathématiques [math]/Systèmes dynamiques [math.DS]
English abstract : [en]
Learning representations of underlying environmental dynamics from partial observations is a critical challenge in machine learning. In the context of Partially Observable Markov Decision Processes (POMDPs), state ...
Show more >Learning representations of underlying environmental dynamics from partial observations is a critical challenge in machine learning. In the context of Partially Observable Markov Decision Processes (POMDPs), state representations are often inferred from the history of past observations and actions. We demonstrate that incorporating future information is essential to accurately capture causal dynamics and enhance state representations. To address this, we introduce a Dynamical Variational Auto-Encoder (DVAE) designed to learn causal Markovian dynamics from offline trajectories in a POMDP. Our method employs an extended hindsight framework that integrates past, current, and multi-step future information within a factored-POMDP setting. Empirical results reveal that this approach uncovers the causal graph governing hidden state transitions more effectively than history-based and typical hindsight-based models.Show less >
Show more >Learning representations of underlying environmental dynamics from partial observations is a critical challenge in machine learning. In the context of Partially Observable Markov Decision Processes (POMDPs), state representations are often inferred from the history of past observations and actions. We demonstrate that incorporating future information is essential to accurately capture causal dynamics and enhance state representations. To address this, we introduce a Dynamical Variational Auto-Encoder (DVAE) designed to learn causal Markovian dynamics from offline trajectories in a POMDP. Our method employs an extended hindsight framework that integrates past, current, and multi-step future information within a factored-POMDP setting. Empirical results reveal that this approach uncovers the causal graph governing hidden state transitions more effectively than history-based and typical hindsight-based models.Show less >
Language :
Anglais
ANR Project :
Collections :
Source :
Files
- 2411.07832
- Open access
- Access the document