On the inviscid limit of the 2D Euler ...
Document type :
Article dans une revue scientifique: Article original
Title :
On the inviscid limit of the 2D Euler equations with vorticity along the $(LMO^\alpha)_\alpha$ scale
Author(s) :
Bernicot, Frederic [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Elgindi, Tarek M. [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Keraani, Sahbi [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire de Mathématiques Jean Leray [LMJL]
Elgindi, Tarek M. [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Keraani, Sahbi [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Pages :
597-619
Publisher :
EMS
Publication date :
2016
ISSN :
0294-1449
Keyword(s) :
BMO-type space
Inviscid limit
Global well-posedness
2D incompressible Euler equations
Inviscid limit
Global well-posedness
2D incompressible Euler equations
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Analyse classique [math.CA]
English abstract : [en]
In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} ...
Show more >In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} and $BMO$. In the present paper we prove a global result of inviscid limit of the Navier-stokes system with data in this space and other spaces with the same BMO flavor. Some results of local uniform estimates on solutions of the Navier-Stokes equations, independent of the viscosity, are also obtained.Show less >
Show more >In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} and $BMO$. In the present paper we prove a global result of inviscid limit of the Navier-stokes system with data in this space and other spaces with the same BMO flavor. Some results of local uniform estimates on solutions of the Navier-Stokes equations, independent of the viscosity, are also obtained.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
ANR Project :
Comment :
28 pages
Collections :
Source :
Files
- document
- Open access
- Access the document
- Bernicot-Elgindi-Keraani.pdf
- Open access
- Access the document
- 1401.1382
- Open access
- Access the document