On the unimodality of power transformations ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
On the unimodality of power transformations of positive stable densities
Author(s) :
Journal title :
Mathematical News / Mathematische Nachrichten
Pages :
497-506
Publisher :
Wiley-VCH Verlag
Publication date :
2011-11-24
ISSN :
0025-584X
English keyword(s) :
Bernstein function
Complete monotonicity
Kanter function
Mittag-Leffler function
Positive stable distribution
Unimodality
Complete monotonicity
Kanter function
Mittag-Leffler function
Positive stable distribution
Unimodality
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
Let $Z_\alpha$ be a positive $\alpha-$stable random variable and $r\in{\bf R}.$ We show the existence of an unbounded open domain $D$ in $[1/2,1]\times{\bf R}$ with a cusp at $(1/2,-1/2)$, characterized by the complete ...
Show more >Let $Z_\alpha$ be a positive $\alpha-$stable random variable and $r\in{\bf R}.$ We show the existence of an unbounded open domain $D$ in $[1/2,1]\times{\bf R}$ with a cusp at $(1/2,-1/2)$, characterized by the complete monotonicity of the function $F_{\alpha, r} (\lambda) = (\alpha \lambda^\alpha -r)e^{-\lambda^\alpha}\!\! ,$ such that $Z_\alpha^r$ is unimodal if and only if $(\alpha, r)\notin D.$Show less >
Show more >Let $Z_\alpha$ be a positive $\alpha-$stable random variable and $r\in{\bf R}.$ We show the existence of an unbounded open domain $D$ in $[1/2,1]\times{\bf R}$ with a cusp at $(1/2,-1/2)$, characterized by the complete monotonicity of the function $F_{\alpha, r} (\lambda) = (\alpha \lambda^\alpha -r)e^{-\lambda^\alpha}\!\! ,$ such that $Z_\alpha^r$ is unimodal if and only if $(\alpha, r)\notin D.$Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Submission date :
2025-01-24T10:10:48Z
Files
- document
- Open access
- Access the document
- Unistab.pdf
- Open access
- Access the document
- 1002.3813
- Open access
- Access the document