Une région explicite sans zéro pour les ...
Document type :
Thèse
Permalink :
Title :
Une région explicite sans zéro pour les fonctions L de Dirichlet
Author(s) :
Thesis director(s) :
Ramaré Olivier
Defence date :
2002-12-20
Jury president :
Queffélec Hervé (co-directeur)
Jury member(s) :
Queffélec Hervé (co-directeur)
Accredited body :
Université des Sciences et Technologie de Lille - Lille I
Keyword(s) :
région sans zéro
fonction Zêta de Riemann
fonction L de Dirichlet
premier
progression arithmétique
fonction Zêta de Riemann
fonction L de Dirichlet
premier
progression arithmétique
HAL domain(s) :
Mathématiques [math]
French abstract :
Nous étudions la répartition des zéros non triviaux de la fonction Zêta de Riemann. Plus précisément, nous montrons qu'il n'y en a pas dans une région à gauche de l'axe $\Re s =1$ de la forme : \Re s \ge 1- \frac1(R_0 \log ...
Show more >Nous étudions la répartition des zéros non triviaux de la fonction Zêta de Riemann. Plus précisément, nous montrons qu'il n'y en a pas dans une région à gauche de l'axe $\Re s =1$ de la forme : \Re s \ge 1- \frac1(R_0 \log (|\Im s|+2)), où R_0=5.70175. Les méthodes élaborées dans ce cas se généralisent alors à celui des fonctions de Dirichlet et nous établissons que les fonctions L associées à un module q fixé ne s'annulent jamais dans la région~: \Re s \ge 1- \frac1(R_1 \log(q\max(1,|\Im s|))) où R_1=6.4355, à l'exception d'au plus une d'entre elles qui correspondrait alors à un caractère réel et qui aurait au plus un zéro réel dans cette zone (qu'on appelle zéro de Siegel). De plus, nous précisons que chaque fonction associée à un caractère donné possède au plus quatre zéros très proches de l'axe réel dans la région \Re s \ge 1- \frac1(R_4 \log(q\max(1,|\Im s|))) où R_4=2.58208. Enfin, nous appliquons nos résultats à la répartition des nombres premiers dans une progression arithmétique de la forme (a+nq). Nous établissons ainsi que le plus petit d'entre eux (qu'on notera P(a,q)) vérifie P(a,q) \le \exp\big(\alpha(\log q)^2\big) où \alpha=6.95015 pour q\ge10^6.Show less >
Show more >Nous étudions la répartition des zéros non triviaux de la fonction Zêta de Riemann. Plus précisément, nous montrons qu'il n'y en a pas dans une région à gauche de l'axe $\Re s =1$ de la forme : \Re s \ge 1- \frac1(R_0 \log (|\Im s|+2)), où R_0=5.70175. Les méthodes élaborées dans ce cas se généralisent alors à celui des fonctions de Dirichlet et nous établissons que les fonctions L associées à un module q fixé ne s'annulent jamais dans la région~: \Re s \ge 1- \frac1(R_1 \log(q\max(1,|\Im s|))) où R_1=6.4355, à l'exception d'au plus une d'entre elles qui correspondrait alors à un caractère réel et qui aurait au plus un zéro réel dans cette zone (qu'on appelle zéro de Siegel). De plus, nous précisons que chaque fonction associée à un caractère donné possède au plus quatre zéros très proches de l'axe réel dans la région \Re s \ge 1- \frac1(R_4 \log(q\max(1,|\Im s|))) où R_4=2.58208. Enfin, nous appliquons nos résultats à la répartition des nombres premiers dans une progression arithmétique de la forme (a+nq). Nous établissons ainsi que le plus petit d'entre eux (qu'on notera P(a,q)) vérifie P(a,q) \le \exp\big(\alpha(\log q)^2\big) où \alpha=6.95015 pour q\ge10^6.Show less >
English abstract : [en]
We establish the existence of explicit zero-free regions for the Riemann Zeta function. It never vanishes in the region on the left hand side of the axis $\Re s =1$~: \Re s \ge 1- \frac1(R_0 \log (|\Im s|+2)) with R_0=5.70175. ...
Show more >We establish the existence of explicit zero-free regions for the Riemann Zeta function. It never vanishes in the region on the left hand side of the axis $\Re s =1$~: \Re s \ge 1- \frac1(R_0 \log (|\Im s|+2)) with R_0=5.70175. The method is also successful in the more general case of the Dirichlet functions associated with a given modulus q. They never vanish in the region : \Re s \ge 1- \frac1(R_1 \log(q\max(1,|\Im s|))) with R_0=6.4355, except for at most one of them which should be real and which vanishes at most once in this part. Moreover, we precise that each function has at most four zeros in : \Re s \ge 1- \frac1(R_4 \log(q\max(1,|\Im s|))) where R_4=2.58208. The last part is dedicated to an application of these results to the distribution of prime numbers in an arithmetic progression (a+nq). The smallest of them (denoted by P(a,q)) satisfies~: P(a,q) \le \exp\big(\alpha(\log q)^2\big) where \alpha=6.95015 for q\ge10^6.Show less >
Show more >We establish the existence of explicit zero-free regions for the Riemann Zeta function. It never vanishes in the region on the left hand side of the axis $\Re s =1$~: \Re s \ge 1- \frac1(R_0 \log (|\Im s|+2)) with R_0=5.70175. The method is also successful in the more general case of the Dirichlet functions associated with a given modulus q. They never vanish in the region : \Re s \ge 1- \frac1(R_1 \log(q\max(1,|\Im s|))) with R_0=6.4355, except for at most one of them which should be real and which vanishes at most once in this part. Moreover, we precise that each function has at most four zeros in : \Re s \ge 1- \frac1(R_4 \log(q\max(1,|\Im s|))) where R_4=2.58208. The last part is dedicated to an application of these results to the distribution of prime numbers in an arithmetic progression (a+nq). The smallest of them (denoted by P(a,q)) satisfies~: P(a,q) \le \exp\big(\alpha(\log q)^2\big) where \alpha=6.95015 for q\ge10^6.Show less >
Language :
Français
Comment :
Président : Etienne FOUVRY (Professeur, Univ. de Paris XI), Rapporteur : Carl POMERANCE (Professeur, Bell Laboratories Murray Hill, USA), Rapporteur : Michel BALAZARD (Chargé de Recherche CNRS, Univ. de Bordeaux 1), Examinateur : Stéphane LOUBOUTIN (Professeur, Institut de Mathématiques de Luminy), Co-directeur : Hervé QUEFFELEC (Professeur, Univ. de Lille 1), Directeur : Olivier RAMARE (Chargé de Recherche CNRS, Univ. de Lille 1).
Collections :
Source :
Submission date :
2025-01-24T13:41:08Z
Files
- document
- Open access
- Access the document
- tel-00002695.pdf
- Open access
- Access the document