Segmentation of the mean of heteroscedastic ...
Document type :
Article dans une revue scientifique: Article original
Title :
Segmentation of the mean of heteroscedastic data via cross-validation
Author(s) :
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur correspondant]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Statistics and Computing
Pages :
electronic
Publisher :
Springer Verlag (Germany)
Publication date :
2010-07-08
ISSN :
0960-3174
English keyword(s) :
leave-p-out
CGH profile.
heteroscedastic data
CGH profile
Change-point detection
segmentation
resampling
cross-validation
CGH profile.
heteroscedastic data
CGH profile
Change-point detection
segmentation
resampling
cross-validation
HAL domain(s) :
Statistiques [stat]/Méthodologie [stat.ME]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
English abstract : [en]
This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is ...
Show more >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Show less >
Show more >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Comment :
Published in Statistics and Computing. DOI: 10.1007/s11222-010-9196-x
Collections :
Source :
Files
- document
- Open access
- Access the document
- chpt.pdf
- Open access
- Access the document
- chpt_supp.pdf
- Open access
- Access the document
- 0902.3977
- Open access
- Access the document