On Margins and Derandomisation in PAC-Bayes
Type de document :
Communication dans un congrès avec actes
Titre :
On Margins and Derandomisation in PAC-Bayes
Auteur(s) :
Biggs, Felix [Auteur]
The Inria London Programme [Inria-London]
Department of Computer science [University College of London] [UCL-CS]
Guedj, Benjamin [Auteur]
The Inria London Programme [Inria-London]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
Department of Computer science [University College of London] [UCL-CS]
The Inria London Programme [Inria-London]
Department of Computer science [University College of London] [UCL-CS]
Guedj, Benjamin [Auteur]

The Inria London Programme [Inria-London]
MOdel for Data Analysis and Learning [MODAL]
Inria-CWI [Inria-CWI]
Department of Computer science [University College of London] [UCL-CS]
Titre de la manifestation scientifique :
AISTATS 2022 - 25th International Conference on Artificial Intelligence and Statistics
Ville :
Valencia
Pays :
Espagne
Date de début de la manifestation scientifique :
2022-03-28
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Machine Learning [stat.ML]
Statistiques [stat]/Théorie [stat.TH]
Résumé en anglais : [en]
We give a general recipe for derandomising PAC-Bayesian bounds using margins, with the critical ingredient being that our randomised predictions concentrate around some value. The tools we develop traightforwardly lead to ...
Lire la suite >We give a general recipe for derandomising PAC-Bayesian bounds using margins, with the critical ingredient being that our randomised predictions concentrate around some value. The tools we develop traightforwardly lead to margin bounds for various classifiers, including linear prediction—a class that includes boosting and the support vector machine—single-hidden-layer neural networks with an unusual erf activation function, and deep ReLU networks. Further, we extend to partially-derandomised predictors where only some of the randomness is removed, letting us extend bounds to cases where the concentration properties of our predictors are otherwise poor.Lire moins >
Lire la suite >We give a general recipe for derandomising PAC-Bayesian bounds using margins, with the critical ingredient being that our randomised predictions concentrate around some value. The tools we develop traightforwardly lead to margin bounds for various classifiers, including linear prediction—a class that includes boosting and the support vector machine—single-hidden-layer neural networks with an unusual erf activation function, and deep ReLU networks. Further, we extend to partially-derandomised predictors where only some of the randomness is removed, letting us extend bounds to cases where the concentration properties of our predictors are otherwise poor.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2107.03955.pdf
- Accès libre
- Accéder au document
- 2107.03955
- Accès libre
- Accéder au document