Learning general sparse additive models ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Learning general sparse additive models from point queries in high dimensions
Auteur(s) :
Tyagi, Hemant [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Vybiral, Jan [Auteur]
Czech Technical University in Prague [CTU]
MOdel for Data Analysis and Learning [MODAL]
Vybiral, Jan [Auteur]
Czech Technical University in Prague [CTU]
Titre de la revue :
Constructive Approximation
Pagination :
403–455
Éditeur :
Springer Verlag
Date de publication :
2019-05-03
ISSN :
0176-4276
Mot(s)-clé(s) en anglais :
Sparse additive models
sampling
hash functions
sparse recovery Mathematics
sampling
hash functions
sparse recovery Mathematics
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We consider the problem of learning a $d$-variate function $f$ defined on the cube $[−1, 1]^d ⊂ R^d$ , where the algorithm is assumed to have black box access to samples of f within this domain. Denote $S_r ⊂ {[d] \choose ...
Lire la suite >We consider the problem of learning a $d$-variate function $f$ defined on the cube $[−1, 1]^d ⊂ R^d$ , where the algorithm is assumed to have black box access to samples of f within this domain. Denote $S_r ⊂ {[d] \choose r} ; r = 1,. .. , r_0$ to be sets consisting of unknown $r$-wise interactions amongst the coordinate variables. We then focus on the setting where f has an additive structure, i.e., it can be represented as $f = \sum_{j∈S1} φ_j + \sum_{j∈S2} φ_j + · · · + \sum_{j∈S_{r_0}} φ_j$, where each $φ_j ; j ∈ S_r$ is at most r-variate for $1 ≤ r ≤ r_0$. We derive randomized algorithms that query f at carefully constructed set of points, and exactly recover each $S_r$ with high probability. In contrary to the previous work, our analysis does not rely on numerical approximation of derivatives by finite order differences.Lire moins >
Lire la suite >We consider the problem of learning a $d$-variate function $f$ defined on the cube $[−1, 1]^d ⊂ R^d$ , where the algorithm is assumed to have black box access to samples of f within this domain. Denote $S_r ⊂ {[d] \choose r} ; r = 1,. .. , r_0$ to be sets consisting of unknown $r$-wise interactions amongst the coordinate variables. We then focus on the setting where f has an additive structure, i.e., it can be represented as $f = \sum_{j∈S1} φ_j + \sum_{j∈S2} φ_j + · · · + \sum_{j∈S_{r_0}} φ_j$, where each $φ_j ; j ∈ S_r$ is at most r-variate for $1 ≤ r ≤ r_0$. We derive randomized algorithms that query f at carefully constructed set of points, and exactly recover each $S_r$ with high probability. In contrary to the previous work, our analysis does not rely on numerical approximation of derivatives by finite order differences.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- SPAMgen_main.pdf
- Accès libre
- Accéder au document
- 1801.08499
- Accès libre
- Accéder au document