Evolutionary clustering for categorical ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Evolutionary clustering for categorical data using parametric links among multinomial mixture models
Auteur(s) :
Hasnat, Md Abul [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stephane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Velcin, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Bonnevay, Stephane [Auteur]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
Jacques, Julien [Auteur]
Entrepôts, Représentation et Ingénierie des Connaissances [ERIC]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Equipe de Recherche en Ingénierie des Connaissances [ERIC]
MOdel for Data Analysis and Learning [MODAL]
Titre de la revue :
Econometrics and Statistics
Pagination :
141-159
Éditeur :
Elsevier
Date de publication :
2017-07
ISSN :
2452-3062
Mot(s)-clé(s) en anglais :
Twitter data
evolutionary clustering
multinomial distribution
model-based clustering
mixture model
evolutionary clustering
multinomial distribution
model-based clustering
mixture model
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Web
Informatique [cs]/Traitement du texte et du document
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
Informatique [cs]/Web
Informatique [cs]/Traitement du texte et du document
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
Résumé en anglais : [en]
In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions ...
Lire la suite >In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions of clusters over time. To this aim, first we propose the formulation of a generalized model that establishes parametric links among two multinomial mixture. Afterward, different parametric sub-models are defined in order to model typical evolutions of the clustering structure. Model selection criteria allow to select the best sub-models and thus to guess the clustering evolution.For the experiments, first we evaluate the proposed method with synthetic temporal data. Next, we apply it to analyze the annotated social media data. Results show that the proposed method is better than the state-of-the-art based on the common evaluation metrics. Additionally, it can provide interpretation about the temporal evolution of the clusters.Lire moins >
Lire la suite >In this paper, we propose a novel evolutionary clustering method for temporal categorical data based on parametric links among multinomial mixture models. Besides clustering, our main goal is to interpret the evolutions of clusters over time. To this aim, first we propose the formulation of a generalized model that establishes parametric links among two multinomial mixture. Afterward, different parametric sub-models are defined in order to model typical evolutions of the clustering structure. Model selection criteria allow to select the best sub-models and thus to guess the clustering evolution.For the experiments, first we evaluate the proposed method with synthetic temporal data. Next, we apply it to analyze the annotated social media data. Results show that the proposed method is better than the state-of-the-art based on the common evaluation metrics. Additionally, it can provide interpretation about the temporal evolution of the clusters.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- PLMM.pdf
- Accès libre
- Accéder au document
- PLMM.pdf
- Accès libre
- Accéder au document