Some examples of composition operators and ...
Document type :
Pré-publication ou Document de travail
Permalink :
Title :
Some examples of composition operators and their approximation numbers on the Hardy space of the bi-disk
Author(s) :
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodríguez-Piazza, Luis [Auteur]
English keyword(s) :
Key-words: approximation numbers
Bergman space
bidisk
Composition operator
Green capacity
Hardy space
Monge-Ampère capacity
weighted composition operator
composition oper- ator
weighted compo- sition operator
Bergman space
bidisk
Composition operator
Green capacity
Hardy space
Monge-Ampère capacity
weighted composition operator
composition oper- ator
weighted compo- sition operator
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n ...
Show more >We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n (C_\Phi) ]^{1/\sqrt{n}} = 1$, contrary to the $1$-dimensional case. We also give a situation where this implication holds. We make a link with the Monge-Amp\`ere capacity of the image of $\Phi$.Show less >
Show more >We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n (C_\Phi) ]^{1/\sqrt{n}} = 1$, contrary to the $1$-dimensional case. We also give a situation where this implication holds. We make a link with the Monge-Amp\`ere capacity of the image of $\Phi$.Show less >
Language :
Anglais
Collections :
Source :
Submission date :
2025-01-24T17:34:29Z
Files
- document
- Open access
- Access the document
- Examples-bidisk_revised.pdf
- Open access
- Access the document
- 1706.03570
- Open access
- Access the document