• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Rigourous Demonstration of the Validity ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1007/s10955-017-1834-7
Title :
A Rigourous Demonstration of the Validity of Boltzmann’s Scenario for the Spatial Homogenization of a Freely Expanding Gas and the Equilibration of the Kac Ring
Author(s) :
De Bievre, Stephan [Auteur] refId
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Parris, Paul [Auteur]
Missouri University of Science and Technology [Missouri S&T]
Journal title :
Journal of Statistical Physics
Pages :
772 - 793
Publisher :
Springer Verlag
Publication date :
2017-08
ISSN :
0022-4715
HAL domain(s) :
Physique [physics]/Physique mathématique [math-ph]
Mathématiques [math]
English abstract : [en]
Boltzmann provided a scenario to explain why individual macroscopic systems composed of a large number $N$ of microscopic constituents are inevitably (i.e., with overwhelming probability) observed to approach a unique ...
Show more >
Boltzmann provided a scenario to explain why individual macroscopic systems composed of a large number $N$ of microscopic constituents are inevitably (i.e., with overwhelming probability) observed to approach a unique macroscopic state of thermodynamic equilibrium, and why after having done so, they are then observed to remain in that state, apparently forever. We provide here rigourous new results that mathematically prove the basic features of Boltzmann’s scenario for two classical models: a simple boundary-free model for the spatial homogenization of a non-interacting gas of point particles, and the well-known Kac ring model. Our results, based on concentration inequalities that go back to Hoeffding, and which focus on the typical behavior of individual macroscopic systems, improve upon previous results by providing estimates, exponential in $N$, of probabilities and time scales involved.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Files
Thumbnail
  • 1701.00116
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017