Stability and convergence of an hybrid ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
Author(s) :
Calgaro, Caterina [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]

Reliable numerical approximations of dissipative systems [RAPSODI]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]
Journal title :
Communications on Pure and Applied Analysis
Pages :
429-448
Publisher :
AIMS American Institute of Mathematical Sciences
Publication date :
2018-03
ISSN :
1534-0392
English keyword(s) :
convergence
stability
Finite Volume method
Finite Element method
Kazhikhov-Smagulov model
stability
Finite Volume method
Finite Element method
Kazhikhov-Smagulov model
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization ...
Show more >In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.Show less >
Show more >In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- CEZ_CPAA_HAL_12sept.pdf
- Open access
- Access the document