Manganese Pincer Complexes for the Base-Free, ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Manganese Pincer Complexes for the Base-Free, Acceptorless Dehydrogenative Coupling of Alcohols to Esters: Development, Scope, and Understanding
Author(s) :
Nguyen, Duc Hanh [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trivelli, Xavier [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Capet, Frederic [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Paul, Jean-Francois [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Dumeignil, Franck [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Gauvin, Regis [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trivelli, Xavier [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Capet, Frederic [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Paul, Jean-Francois [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Dumeignil, Franck [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Gauvin, Regis [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Journal title :
ACS Catalysis
Volume number :
7
Pages :
2022-2032
Publication date :
2017-01-30
English keyword(s) :
dehydrogenative coupling
manganese
pincer ligands
metal−ligand cooperativity
green chemistry
esters
manganese
pincer ligands
metal−ligand cooperativity
green chemistry
esters
HAL domain(s) :
Chimie/Catalyse
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Aliphatic PNP pincer-supported earth-abundant manganese(I) dicarbonyl complexes behave as effective catalysts for the acceptorless dehydrogenative coupling of a wide range of alcohols to esters under base-free conditions. ...
Show more >Aliphatic PNP pincer-supported earth-abundant manganese(I) dicarbonyl complexes behave as effective catalysts for the acceptorless dehydrogenative coupling of a wide range of alcohols to esters under base-free conditions. The reaction proceeds under neat conditions, with modest catalyst loading and releasing only H2 as byproduct. Mechanistic aspects were addressed by synthesizing key species related to the catalytic cycle (characterized by X-ray structure determination, multinuclear (1H, 13C, 31P, 15N, 55Mn) NMR, infrared spectroscopy, inter alia), by studying elementary steps connected to the postulated mechanism, and by resorting to DFT calculations. As in the case of related ruthenium and iron PNP catalysts, the dehydrogenation results from cycling between the amido and amino-hydride forms of the PNP-Mn(CO)2 scaffold. For the dehydrogenation of alcohols into aldehydes, our results suggest that the highest energy barrier corresponds to the hydrogen release from the amino-hydride form, although its value is close to that of the outer-sphere dehydrogenation of the alcohol into aldehyde. This contrasts with the ruthenium and iron catalytic systems, where dehydrogenation of the substrate into aldehyde is less energy-demanding compared to hydrogen release from the cooperative metal–ligand framework.Show less >
Show more >Aliphatic PNP pincer-supported earth-abundant manganese(I) dicarbonyl complexes behave as effective catalysts for the acceptorless dehydrogenative coupling of a wide range of alcohols to esters under base-free conditions. The reaction proceeds under neat conditions, with modest catalyst loading and releasing only H2 as byproduct. Mechanistic aspects were addressed by synthesizing key species related to the catalytic cycle (characterized by X-ray structure determination, multinuclear (1H, 13C, 31P, 15N, 55Mn) NMR, infrared spectroscopy, inter alia), by studying elementary steps connected to the postulated mechanism, and by resorting to DFT calculations. As in the case of related ruthenium and iron PNP catalysts, the dehydrogenation results from cycling between the amido and amino-hydride forms of the PNP-Mn(CO)2 scaffold. For the dehydrogenation of alcohols into aldehydes, our results suggest that the highest energy barrier corresponds to the hydrogen release from the amino-hydride form, although its value is close to that of the outer-sphere dehydrogenation of the alcohol into aldehyde. This contrasts with the ruthenium and iron catalytic systems, where dehydrogenation of the substrate into aldehyde is less energy-demanding compared to hydrogen release from the cooperative metal–ligand framework.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
ENSCL
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Collections :
Research team(s) :
Catalyse et synthèse éco-compatible (CASECO)
Modélisation et spectroscopies (MODSPEC)
Valorisation des alcanes et de la biomasse (VAALBIO)
Modélisation et spectroscopies (MODSPEC)
Valorisation des alcanes et de la biomasse (VAALBIO)
Submission date :
2019-09-25T14:05:17Z
2020-09-25T08:08:01Z
2020-09-25T08:08:01Z
Files
- Alcohols_Coupling_Mg.pdf
- Version éditeur
- Restricted access
- Access the document