Nanoconfinement‐Induced Electrochemical ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Nanoconfinement‐Induced Electrochemical Ion‐Solvent Cointercalation in Pillared Titanate Host Materials
Author(s) :
Elmanzalawy, Mennatalla [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Song, Haohong [Auteur]
Vanderbilt University [Nashville]
Tobis, Maciej [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Leiter, Robert [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Choi, Jaehoon [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Moon, Hyein [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Tsai, Wan-Yu [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Jiang, De‐en [Auteur]
Vanderbilt University [Nashville]
Fleischmann, Simon [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Song, Haohong [Auteur]
Vanderbilt University [Nashville]
Tobis, Maciej [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Leiter, Robert [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Choi, Jaehoon [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Moon, Hyein [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Tsai, Wan-Yu [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Jiang, De‐en [Auteur]
Vanderbilt University [Nashville]
Fleischmann, Simon [Auteur]
Karlsruhe Institute of Technology = Karlsruher Institut für Technologie [KIT]
Helmholtz Institute Ulm [HIU]
Journal title :
Angewandte Chemie International Edition
Publisher :
Wiley-VCH Verlag
Publication date :
2025-03-11
ISSN :
1433-7851
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Abstract Electrochemical ion‐solvent cointercalation reactions are an avenue to reach improved kinetics compared to the corresponding intercalation of desolvated ions. Here, we demonstrate the impact of different structural ...
Show more >Abstract Electrochemical ion‐solvent cointercalation reactions are an avenue to reach improved kinetics compared to the corresponding intercalation of desolvated ions. Here, we demonstrate the impact of different structural pillar molecules on the electrochemical Li + intercalation mechanism in expanded hydrogen titanate (HTO) electrode materials. We show that interlayer‐expansion of HTO with organic pillars can enable cointercalation reactions. Their electrochemical reversibility is drastically improved when non‐cross‐linking pillars are employed that expand and separate the host material's individual layers, underlining the impact of the electrochemo‐mechanics of the nanoconfined interlayer space. This pillared HTO structure results in an increased Li + storage capacity and reversibility compared to pristine HTO. We derive structural models of the pillared HTO host materials based on combined experiments and theoretical calculations, and employ electrochemical operando experiments to unambiguously demonstrate the nanoconfinement‐induced cointercalation mechanism in pillared HTO electrode materials. The work demonstrates the potential of nanoconfined pillar molecules to modify host materials and enable highly reversible cointercalation reactions with improved capacity and kinetics.Show less >
Show more >Abstract Electrochemical ion‐solvent cointercalation reactions are an avenue to reach improved kinetics compared to the corresponding intercalation of desolvated ions. Here, we demonstrate the impact of different structural pillar molecules on the electrochemical Li + intercalation mechanism in expanded hydrogen titanate (HTO) electrode materials. We show that interlayer‐expansion of HTO with organic pillars can enable cointercalation reactions. Their electrochemical reversibility is drastically improved when non‐cross‐linking pillars are employed that expand and separate the host material's individual layers, underlining the impact of the electrochemo‐mechanics of the nanoconfined interlayer space. This pillared HTO structure results in an increased Li + storage capacity and reversibility compared to pristine HTO. We derive structural models of the pillared HTO host materials based on combined experiments and theoretical calculations, and employ electrochemical operando experiments to unambiguously demonstrate the nanoconfinement‐induced cointercalation mechanism in pillared HTO electrode materials. The work demonstrates the potential of nanoconfined pillar molecules to modify host materials and enable highly reversible cointercalation reactions with improved capacity and kinetics.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- document
- Open access
- Access the document
- Angew%20Chem%20Int%20Ed%20-%202025%20-%20Elmanzalawy%20-%20Nanoconfinement%E2%80%90Induced%20Electrochemical%20Ion%E2%80%90Solvent%20Cointercalation%20in%20Pillared.pdf
- Open access
- Access the document