A “top-down” in silico approach for designing ...
Type de document :
Article dans une revue scientifique
DOI :
URL permanente :
Titre :
A “top-down” in silico approach for designing ad hoc bio-based solvents: application to glycerol-derived solvents of nitrocellulose
Auteur(s) :
Moity, Laurianne [Auteur]
Molinier, Valérie [Auteur]
Benazzouz, Adrien [Auteur]
Joossen, Benjamin [Auteur]
Gerbaud, Vincent [Auteur]
Aubry, Jean-Marie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Molinier, Valérie [Auteur]
Benazzouz, Adrien [Auteur]
Joossen, Benjamin [Auteur]
Gerbaud, Vincent [Auteur]
Aubry, Jean-Marie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
Green Chemistry
Numéro :
18
Pagination :
3239-3249
Date de publication :
2016-03-09
Discipline(s) HAL :
Chimie/Chimie organique
Résumé en anglais : [en]
Potentially effective glycerol-based solvents for nitrocellulose have been designed using a top-down in silico procedure that combines Computer Assisted Organic Synthesis (CAOS) and Molecular Design (CAMD). Starting from ...
Lire la suite >Potentially effective glycerol-based solvents for nitrocellulose have been designed using a top-down in silico procedure that combines Computer Assisted Organic Synthesis (CAOS) and Molecular Design (CAMD). Starting from a bio-based building block – glycerol – a large number of synthetically feasible chemical structures have been designed using the GRASS (GeneratoR of Agro-based Sustainable Solvents) program. GRASS applies well-selected industrial chemical transformations to glycerol together with a limited number of relevant co-reactants. Then, the most promising structures are considered as lead compounds for further modification in silico thanks to the IBSS (InBioSynSolv) program, which generates derivatives with alkyl, cycloalkyl, alkene, cycloalkene or phenyl substituents. Finally, IBSS ranks all the candidates according to the value of their overall performance function to best fit the predefined specifications, i.e. (i) high solubilisation of nitrocellulose, (ii) slow evaporation and non-flammability (iii) low toxicity and environmental impact. This general strategy enables the highlighting of the most relevant solvent candidate derived from any building block for a given application. To validate the approach, 15 commercially available solvents derived from glycerol were confronted with nitrocellulose and led to highlight diacetin as an effective and safe solvent.Lire moins >
Lire la suite >Potentially effective glycerol-based solvents for nitrocellulose have been designed using a top-down in silico procedure that combines Computer Assisted Organic Synthesis (CAOS) and Molecular Design (CAMD). Starting from a bio-based building block – glycerol – a large number of synthetically feasible chemical structures have been designed using the GRASS (GeneratoR of Agro-based Sustainable Solvents) program. GRASS applies well-selected industrial chemical transformations to glycerol together with a limited number of relevant co-reactants. Then, the most promising structures are considered as lead compounds for further modification in silico thanks to the IBSS (InBioSynSolv) program, which generates derivatives with alkyl, cycloalkyl, alkene, cycloalkene or phenyl substituents. Finally, IBSS ranks all the candidates according to the value of their overall performance function to best fit the predefined specifications, i.e. (i) high solubilisation of nitrocellulose, (ii) slow evaporation and non-flammability (iii) low toxicity and environmental impact. This general strategy enables the highlighting of the most relevant solvent candidate derived from any building block for a given application. To validate the approach, 15 commercially available solvents derived from glycerol were confronted with nitrocellulose and led to highlight diacetin as an effective and safe solvent.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Colloïdes catalyse oxydation (CÏSCO)
Date de dépôt :
2019-09-25T14:37:47Z