Nuclear Quantum Effects in Water Reorientation ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics
Auteur(s) :
Wilkins, David M. [Auteur]
Manolopoulos, David E. [Auteur]
Pipolo, Silvio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Laage, Damien [Auteur]
Hynes, James T. [Auteur]
Manolopoulos, David E. [Auteur]
Pipolo, Silvio [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Laage, Damien [Auteur]
Hynes, James T. [Auteur]
Titre de la revue :
The Journal of Physical Chemistry Letters
Numéro :
8
Pagination :
2602-2607
Date de publication :
2017-05-22
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
We combine classical and ring polymer molecular dynamics simulations with the molecular jump model to provide a molecular description of the nuclear quantum effects (NQEs) on water reorientation and hydrogen-bond dynamics ...
Lire la suite >We combine classical and ring polymer molecular dynamics simulations with the molecular jump model to provide a molecular description of the nuclear quantum effects (NQEs) on water reorientation and hydrogen-bond dynamics in liquid H2O and D2O. We show that while the net NQE is negligible in D2O, it leads to a ∼13% acceleration in H2O dynamics compared to a classical description. Large angular jumps—exchanging hydrogen-bond partners—are the dominant reorientation pathway (just as in a classical description); the faster reorientation dynamics arise from the increased jump rate constant. NQEs do not change the jump amplitude distribution, and no significant tunneling is found. The faster jump dynamics are quantitatively related to decreased structuring of the OO radial distribution function when NQEs are included. This is explained, via a jump model analysis, by competition between the effects of water’s librational and OH stretch mode zero-point energies on the hydrogen-bond strength.Lire moins >
Lire la suite >We combine classical and ring polymer molecular dynamics simulations with the molecular jump model to provide a molecular description of the nuclear quantum effects (NQEs) on water reorientation and hydrogen-bond dynamics in liquid H2O and D2O. We show that while the net NQE is negligible in D2O, it leads to a ∼13% acceleration in H2O dynamics compared to a classical description. Large angular jumps—exchanging hydrogen-bond partners—are the dominant reorientation pathway (just as in a classical description); the faster reorientation dynamics arise from the increased jump rate constant. NQEs do not change the jump amplitude distribution, and no significant tunneling is found. The faster jump dynamics are quantitatively related to decreased structuring of the OO radial distribution function when NQEs are included. This is explained, via a jump model analysis, by competition between the effects of water’s librational and OH stretch mode zero-point energies on the hydrogen-bond strength.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Modélisation et spectroscopies (MODSPEC)
Date de dépôt :
2019-09-25T14:37:48Z