Predicting falls in elderly patients with ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Predicting falls in elderly patients with chronic pain and other chronic conditions
Auteur(s) :
Lazkani, Aida [Auteur]
Delespierre, Tiba [Auteur]
Bauduceau, Bernard [Auteur]
Benattar-Zibi, Linda [Auteur]
Bertin, Philippe [Auteur]
Berrut, Gilles [Auteur]
Corruble, Emmanuelle [Auteur]
Danchin, Nicolas [Auteur]
Derumeaux, Genevieve [Auteur]
Doucet, Jean [Auteur]
Falissard, Bruno [Auteur]
Forette, Françoise [Auteur]
Hanon, Olivier [Auteur]
Pasquier, Florence [Auteur]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Troubles cognitifs dégénératifs et vasculaires - U1171
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Pinget, Michel [Auteur]
Ourabah, Rissane [Auteur]
Piedvache, Céline [Auteur]
Becquemont, Laurent [Auteur]
Delespierre, Tiba [Auteur]
Bauduceau, Bernard [Auteur]
Benattar-Zibi, Linda [Auteur]
Bertin, Philippe [Auteur]
Berrut, Gilles [Auteur]
Corruble, Emmanuelle [Auteur]
Danchin, Nicolas [Auteur]
Derumeaux, Genevieve [Auteur]
Doucet, Jean [Auteur]
Falissard, Bruno [Auteur]
Forette, Françoise [Auteur]
Hanon, Olivier [Auteur]
Pasquier, Florence [Auteur]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Troubles cognitifs dégénératifs et vasculaires - U1171
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Pinget, Michel [Auteur]
Ourabah, Rissane [Auteur]
Piedvache, Céline [Auteur]
Becquemont, Laurent [Auteur]
Titre de la revue :
Aging Clinical and Experimental Research
Nom court de la revue :
Aging Clin. Exp. Res.
Numéro :
27
Pagination :
653-661
Date de publication :
2015-10-01
ISSN :
1594-0667
Mot(s)-clé(s) en anglais :
Elderly
Chronic pain
Fall
Risk factor
Chronic pain
Fall
Risk factor
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
BACKGROUND: The aim was to identify fall predictors in elderly suffering from chronic pain (CP) and to test their applicability among patients with other chronic conditions.
METHODS: 1,379 non-institutionalized patients ...
Lire la suite >BACKGROUND: The aim was to identify fall predictors in elderly suffering from chronic pain (CP) and to test their applicability among patients with other chronic conditions. METHODS: 1,379 non-institutionalized patients aged 65 years and older who were suffering from CP (S.AGE CP sub-cohort) were monitored every 6 months for 1 year. Socio-demographic, clinical and pain data and medication use were assessed at baseline for the association with falls in the following year. Falls were assessed retrospectively at each study visit. Logistic regression analyses were performed to identify fall predictors. The derived model was applied to two additional S.AGE sub-cohorts: atrial fibrillation (AF) (n = 1,072) and type-2 diabetes mellitus (T2DM) (n = 983). RESULTS: Four factors predicted falls in the CP sub-cohort: fall history (OR: 4.03, 95 % CI 2.79-5.82), dependency in daily activities (OR: 1.81, 95 % CI 1.27-2.59), age ≥75 (OR: 1.53, 95 % CI 1.04-2.25) and living alone (OR: 1.73, 95 % CI 1.24-2.41) (Area Under the Curve: AUC = 0.71, 95 % CI 0.67-0.75). These factors were relevant in AF (AUC = 0.71, 95 % CI 0.66-0.75) and T2DM (AUC = 0.67, 95 % CI 0.59-0.73) sub-cohorts. Fall predicted probability in CP, AF and T2DM sub-cohorts increased from 7, 7 and 6 % in patients with no risk factors to 59, 66 and 45 % respectively, in those with the four predictors. Fall history was the strongest predictor in the three sub-cohorts. CONCLUSIONS: Fall history, dependency in daily activities, age ≥75 and living alone are independent fall predictors in CP, AF and T2DM patients.Lire moins >
Lire la suite >BACKGROUND: The aim was to identify fall predictors in elderly suffering from chronic pain (CP) and to test their applicability among patients with other chronic conditions. METHODS: 1,379 non-institutionalized patients aged 65 years and older who were suffering from CP (S.AGE CP sub-cohort) were monitored every 6 months for 1 year. Socio-demographic, clinical and pain data and medication use were assessed at baseline for the association with falls in the following year. Falls were assessed retrospectively at each study visit. Logistic regression analyses were performed to identify fall predictors. The derived model was applied to two additional S.AGE sub-cohorts: atrial fibrillation (AF) (n = 1,072) and type-2 diabetes mellitus (T2DM) (n = 983). RESULTS: Four factors predicted falls in the CP sub-cohort: fall history (OR: 4.03, 95 % CI 2.79-5.82), dependency in daily activities (OR: 1.81, 95 % CI 1.27-2.59), age ≥75 (OR: 1.53, 95 % CI 1.04-2.25) and living alone (OR: 1.73, 95 % CI 1.24-2.41) (Area Under the Curve: AUC = 0.71, 95 % CI 0.67-0.75). These factors were relevant in AF (AUC = 0.71, 95 % CI 0.66-0.75) and T2DM (AUC = 0.67, 95 % CI 0.59-0.73) sub-cohorts. Fall predicted probability in CP, AF and T2DM sub-cohorts increased from 7, 7 and 6 % in patients with no risk factors to 59, 66 and 45 % respectively, in those with the four predictors. Fall history was the strongest predictor in the three sub-cohorts. CONCLUSIONS: Fall history, dependency in daily activities, age ≥75 and living alone are independent fall predictors in CP, AF and T2DM patients.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CHU Lille
CNRS
Inserm
Université de Lille
CNRS
Inserm
Université de Lille
Collections :
Équipe(s) de recherche :
Troubles cognitifs dégénératifs et vasculaires
Date de dépôt :
2019-11-27T14:29:12Z