Robust regression analysis for a censored ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Robust regression analysis for a censored response and functional regressors
Auteur(s) :
Hennani, L. Ait [Auteur]
Lemdani, Mohamed [Auteur]
Laboratoire de Biomathématiques
Said, Elias Ould [Auteur]
Lemdani, Mohamed [Auteur]

Laboratoire de Biomathématiques
Said, Elias Ould [Auteur]
Titre de la revue :
Journal of nonparametric statistics
Nom court de la revue :
J. Nonparametr. Stat.
Numéro :
31
Pagination :
221-243
Éditeur :
Taylor & Francis
Date de publication :
2019-01-01
ISSN :
1048-5252
Mot(s)-clé(s) en anglais :
robust estimation
kernel estimator
Asymptotic normality
functional random variable
censored data
kernel estimator
Asymptotic normality
functional random variable
censored data
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Let (Tn)n≥1 be an independent and identically distributed (iid) sequence of interest random variables (rv) distributed as T. In censorship models, T is subject to random censoring by another rv C. Based on the so-called ...
Lire la suite >Let (Tn)n≥1 be an independent and identically distributed (iid) sequence of interest random variables (rv) distributed as T. In censorship models, T is subject to random censoring by another rv C. Based on the so-called synthetic data, we define an M-estimator for the regression function of T given a functional covariate χ. Under standard assumptions on the kernel, bandwidth and small ball probabilities, we establish its strong consistency with rate and asymptotic normality. The asymptotic variance is given explicitly. Confidence bands are given and special cases are studied to show the generality of our work. Finally simulations are drawn to illustrate both quality of fit and robustness.Lire moins >
Lire la suite >Let (Tn)n≥1 be an independent and identically distributed (iid) sequence of interest random variables (rv) distributed as T. In censorship models, T is subject to random censoring by another rv C. Based on the so-called synthetic data, we define an M-estimator for the regression function of T given a functional covariate χ. Under standard assumptions on the kernel, bandwidth and small ball probabilities, we establish its strong consistency with rate and asymptotic normality. The asymptotic variance is given explicitly. Confidence bands are given and special cases are studied to show the generality of our work. Finally simulations are drawn to illustrate both quality of fit and robustness.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CHU Lille
Université de Lille
Université de Lille
Date de dépôt :
2019-12-09T18:20:38Z
2024-04-10T09:09:18Z
2024-04-10T09:09:18Z