Mechanistic insights on ultra-tough ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Mechanistic insights on ultra-tough polylactide-based ionic nanocomposites
Auteur(s) :
Potaufeux, Jean-Emile [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Université de Mons / University of Mons [UMONS]
Odent, Jérémy [Auteur]
Université de Mons / University of Mons [UMONS]
Notta-Cuvier, Delphine [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Delille, Rémi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Lauro, Franck [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, Jean-Marie [Auteur]
Université de Mons / University of Mons [UMONS]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Université de Mons / University of Mons [UMONS]
Odent, Jérémy [Auteur]
Université de Mons / University of Mons [UMONS]
Notta-Cuvier, Delphine [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Delille, Rémi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Lauro, Franck [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, Jean-Marie [Auteur]
Université de Mons / University of Mons [UMONS]
Titre de la revue :
Composites Science and Technology
Nom court de la revue :
Composites Science and Technology
Pagination :
108075
Éditeur :
Elsevier BV
Date de publication :
2020-05
ISSN :
0266-3538
Mot(s)-clé(s) en anglais :
Ionic network
Smart materials
Nano composites
Fracture toughness
Extrusion
Smart materials
Nano composites
Fracture toughness
Extrusion
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
We report the synthesis and characterization of ultra-tough polylactide-based ionic nanocomposites via melt-blending of commercial polylactide (PLA), imidazolium-functionalized poly(ethylene glycol)-based polyurethane ...
Lire la suite >We report the synthesis and characterization of ultra-tough polylactide-based ionic nanocomposites via melt-blending of commercial polylactide (PLA), imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonated silica nanoparticles (SiO2–SO3H) using extrusion techniques. The proximity of bulky pendant imidazolium cationic sites attached onto the highly functionalized polyurethane to the anionic sulfonate groups at the silica nanoparticle surface readily allow maximizing dynamic ionic interactions within the resulting PLA-based materials. This new design leads to a unique property profile that combines ultra-toughness (no break) and ductility (up to 150%), without critical loss of stiffness as well as improved thermal stability (up to 40 °C higher compared to neat PLA). In addition, we present a detailed mechanistic study aiming at elucidating the energy-dissipative toughening in these PLA/im-PU/SiO2–SO3H blends under quasi-static and high-speed loadings (ca. impact, tensile, 3-points bending). Relying on Small-Angle X-Ray Scattering (SAXS), creep and rheological measurements, a toughening mechanism is finally proposed to account for the impact behavior of the resulting ionic nanocomposites.Lire moins >
Lire la suite >We report the synthesis and characterization of ultra-tough polylactide-based ionic nanocomposites via melt-blending of commercial polylactide (PLA), imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonated silica nanoparticles (SiO2–SO3H) using extrusion techniques. The proximity of bulky pendant imidazolium cationic sites attached onto the highly functionalized polyurethane to the anionic sulfonate groups at the silica nanoparticle surface readily allow maximizing dynamic ionic interactions within the resulting PLA-based materials. This new design leads to a unique property profile that combines ultra-toughness (no break) and ductility (up to 150%), without critical loss of stiffness as well as improved thermal stability (up to 40 °C higher compared to neat PLA). In addition, we present a detailed mechanistic study aiming at elucidating the energy-dissipative toughening in these PLA/im-PU/SiO2–SO3H blends under quasi-static and high-speed loadings (ca. impact, tensile, 3-points bending). Relying on Small-Angle X-Ray Scattering (SAXS), creep and rheological measurements, a toughening mechanism is finally proposed to account for the impact behavior of the resulting ionic nanocomposites.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2020-03-02T07:42:49Z
2020-03-02T07:49:33Z
2020-03-09T10:36:52Z
2020-03-02T07:49:33Z
2020-03-09T10:36:52Z