A Consistent Discretisation method for ...
Document type :
Communication dans un congrès avec actes
Title :
A Consistent Discretisation method for Stable Homogeneous Systems based on Lyapunov Function
Author(s) :
Sanchez, Tonametl [Auteur]
Instituto Potosino de Investigacion Cientifica y Tecnologica [IPICYT]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Instituto Potosino de Investigacion Cientifica y Tecnologica [IPICYT]
Polyakov, Andrey [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Conference title :
IFAC World Congress
City :
Berlin
Country :
Allemagne
Start date of the conference :
2020-07-12
English keyword(s) :
Nonlinear systems
discrete-time systems
homogeneous systems
discrete-time systems
homogeneous systems
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this paper we propose a discretisation scheme for continuous and asymptotically stable homogeneous systems. This method is based on the dynamics of the system projected on a level surface of a homogeneous Lyapunov ...
Show more >In this paper we propose a discretisation scheme for continuous and asymptotically stable homogeneous systems. This method is based on the dynamics of the system projected on a level surface of a homogeneous Lyapunov function. The discretisation method is explicit and preserves the convergence rate of the continuous-time system.Show less >
Show more >In this paper we propose a discretisation scheme for continuous and asymptotically stable homogeneous systems. This method is based on the dynamics of the system projected on a level surface of a homogeneous Lyapunov function. The discretisation method is explicit and preserves the convergence rate of the continuous-time system.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-02614526/document
- Open access
- Access the document
- https://hal.inria.fr/hal-02614526/document
- Open access
- Access the document
- https://hal.inria.fr/hal-02614526/document
- Open access
- Access the document
- document
- Open access
- Access the document
- IFAC20_1150_FI.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- IFAC20_1150_FI.pdf
- Open access
- Access the document