Split-and-augmented Gibbs sampler - ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Split-and-augmented Gibbs sampler - Application to large-scale inference problems
Auteur(s) :
Vono, Maxime [Auteur]
Signal et Communications [IRIT-SC]
Dobigeon, Nicolas [Auteur]
Signal et Communications [IRIT-SC]
Institut National Polytechnique (Toulouse) [Toulouse INP]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Signal et Communications [IRIT-SC]
Dobigeon, Nicolas [Auteur]
Signal et Communications [IRIT-SC]
Institut National Polytechnique (Toulouse) [Toulouse INP]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la revue :
IEEE Transactions on Signal Processing
Pagination :
1648-1661
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2019-03-15
ISSN :
1053-587X
Discipline(s) HAL :
Statistiques [stat]/Méthodologie [stat.ME]
Résumé en anglais : [en]
This paper derives two new optimization-driven Monte Carlo algorithms inspired from variable splitting and data augmentation. In particular, the formulation of one of the proposed approaches is closely related to the ...
Lire la suite >This paper derives two new optimization-driven Monte Carlo algorithms inspired from variable splitting and data augmentation. In particular, the formulation of one of the proposed approaches is closely related to the alternating direction method of multipliers (ADMM) main steps. The proposed framework enables to derive faster and more efficient sampling schemes than the current state-of-the-art methods and can embed the latter. By sampling efficiently the parameter to infer as well as the hyperparameters of the problem, the generated samples can be used to approximate Bayesian estimators of the parameters to infer. Additionally, the proposed approach brings confidence intervals at a low cost contrary to optimization methods. Simulations on two often-studied signal processing problems illustrate the performance of the two proposed samplers. All results are compared to those obtained by recent state-of-the-art optimization and MCMC algorithms used to solve these problems. Index Terms Bayesian inference, data augmentation, high-dimensional problems, Markov chain Monte Carlo, variable splitting.Lire moins >
Lire la suite >This paper derives two new optimization-driven Monte Carlo algorithms inspired from variable splitting and data augmentation. In particular, the formulation of one of the proposed approaches is closely related to the alternating direction method of multipliers (ADMM) main steps. The proposed framework enables to derive faster and more efficient sampling schemes than the current state-of-the-art methods and can embed the latter. By sampling efficiently the parameter to infer as well as the hyperparameters of the problem, the generated samples can be used to approximate Bayesian estimators of the parameters to infer. Additionally, the proposed approach brings confidence intervals at a low cost contrary to optimization methods. Simulations on two often-studied signal processing problems illustrate the performance of the two proposed samplers. All results are compared to those obtained by recent state-of-the-art optimization and MCMC algorithms used to solve these problems. Index Terms Bayesian inference, data augmentation, high-dimensional problems, Markov chain Monte Carlo, variable splitting.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02438041/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1804.05809
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02438041/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02438041/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- manuscript.pdf
- Accès libre
- Accéder au document
- 1804.05809
- Accès libre
- Accéder au document