On variable splitting for Markov chain Monte Carlo
Type de document :
Communication dans un congrès avec actes
Titre :
On variable splitting for Markov chain Monte Carlo
Auteur(s) :
Vono, Maxime [Auteur]
Signal et Communications [IRIT-SC]
Dobigeon, Nicolas [Auteur]
Signal et Communications [IRIT-SC]
Institut National Polytechnique (Toulouse) [Toulouse INP]
Chainais, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Signal et Communications [IRIT-SC]
Dobigeon, Nicolas [Auteur]
Signal et Communications [IRIT-SC]
Institut National Polytechnique (Toulouse) [Toulouse INP]
Chainais, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS 2019)
Ville :
Toulouse
Pays :
France
Date de début de la manifestation scientifique :
2019-04-01
Titre de l’ouvrage :
Proceedings of SPARS 2019
Date de publication :
2019
Mot(s)-clé(s) en anglais :
Markov chain Monte Carlo(MCMC) algorithms
Discipline(s) HAL :
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Résumé en anglais : [en]
Variable splitting is an old but widely used technique whichaims at dividing an initial complicated optimization problem into simplersub-problems. In this work, we take inspiration from this variable splitting idea in order ...
Lire la suite >Variable splitting is an old but widely used technique whichaims at dividing an initial complicated optimization problem into simplersub-problems. In this work, we take inspiration from this variable splitting idea in order to build efficient Markov chain Monte Carlo(MCMC) algorithms. Starting from an initial complex target distribution,auxiliary variables are introduced such that the marginal distributionof interest matches the initial one asymptotically. In addition to havetheoretical guarantees, the benefits of such an asymptotically exact dataaugmentation (AXDA) are fourfold: (i) easier-to-sample full conditionaldistributions, (ii) possibility to embed while accelerating state-of-the-artMCMC approaches, (iii) possibility to distribute the inference and (iv)to respect data privacy issues. The proposed approach is illustrated onclassical image processing and statistical learning problems.Lire moins >
Lire la suite >Variable splitting is an old but widely used technique whichaims at dividing an initial complicated optimization problem into simplersub-problems. In this work, we take inspiration from this variable splitting idea in order to build efficient Markov chain Monte Carlo(MCMC) algorithms. Starting from an initial complex target distribution,auxiliary variables are introduced such that the marginal distributionof interest matches the initial one asymptotically. In addition to havetheoretical guarantees, the benefits of such an asymptotically exact dataaugmentation (AXDA) are fourfold: (i) easier-to-sample full conditionaldistributions, (ii) possibility to embed while accelerating state-of-the-artMCMC approaches, (iii) possibility to distribute the inference and (iv)to respect data privacy issues. The proposed approach is illustrated onclassical image processing and statistical learning problems.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Nationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02419442/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02419442/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02419442/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- vono_24984.pdf
- Accès libre
- Accéder au document