Integral Control Design using the Implicit ...
Type de document :
Communication dans un congrès avec actes
Titre :
Integral Control Design using the Implicit Lyapunov Function Approach
Auteur(s) :
Mercado-Uribe, Angel [Auteur]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Moreno, Jaime [Auteur]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Moreno, Jaime [Auteur]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Titre de la manifestation scientifique :
58th IEEE Conference on Decision and Control
Ville :
Nice
Pays :
France
Date de début de la manifestation scientifique :
2019-12-11
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
In this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncer-tainty/perturbation. The controllers are able to reach finite-time ...
Lire la suite >In this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncer-tainty/perturbation. The controllers are able to reach finite-time convergence, rejecting matched constant (Lipschitz, in the discontinuous case) perturbations. For the design, we use the Implicit Lyapunov Function method combined with an explicit Lyapunov function for the addition of the integral term.Lire moins >
Lire la suite >In this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncer-tainty/perturbation. The controllers are able to reach finite-time convergence, rejecting matched constant (Lipschitz, in the discontinuous case) perturbations. For the design, we use the Implicit Lyapunov Function method combined with an explicit Lyapunov function for the addition of the integral term.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02371919/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02371919/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02371919/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CDC19_1350_FI%20%281%29.pdf
- Accès libre
- Accéder au document