Surrogate-Assisted Optimization for ...
Type de document :
Communication dans un congrès avec actes
Titre :
Surrogate-Assisted Optimization for Multi-stage Optimal Scheduling of Virtual Power Plants
Auteur(s) :
Gobert, Maxime [Auteur]
Université de Mons / University of Mons [UMONS]
Gmys, Jan [Auteur]
Université de Mons / University of Mons [UMONS]
Toubeau, Jean-François [Auteur]
Université de Mons / University of Mons [UMONS]
Vallee, Francois [Auteur]
Université de Mons / University of Mons [UMONS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Université de Mons / University of Mons [UMONS]
Gmys, Jan [Auteur]
Université de Mons / University of Mons [UMONS]
Toubeau, Jean-François [Auteur]
Université de Mons / University of Mons [UMONS]
Vallee, Francois [Auteur]
Université de Mons / University of Mons [UMONS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Titre de la manifestation scientifique :
PaCOS 2019 - International Workshop on the Synergy of Parallel Computing, Optimization and Simulation (part of HPCS 2019)
Ville :
Dublin
Pays :
Irlande
Date de début de la manifestation scientifique :
2019-07-15
Mot(s)-clé(s) en anglais :
Efficient Global Optimization
Two-stage optimization
power market
surrogate models
Two-stage optimization
power market
surrogate models
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]/Algorithme et structure de données [cs.DS]
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Algorithme et structure de données [cs.DS]
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
This paper presents a comparison between two surrogate-assisted optimization methods dealing with two-stage stochastic programming. The Efficient Global Optimization (EGO) framework is challenging a method coupling Genetic ...
Lire la suite >This paper presents a comparison between two surrogate-assisted optimization methods dealing with two-stage stochastic programming. The Efficient Global Optimization (EGO) framework is challenging a method coupling Genetic Algorithm (GA) and offline-learnt kriging model for the lower stage optimization. The objective is to prove the good behavior of bayesian optimization (and in particular EGO) applied to a real-world two-stage problem with strong dependencies between the stages. The problem consists in determining the optimal strategy of an electricity market player participating in reserve (first stage) as well as day-ahead energy and real-time markets (second stage). The decisions optimized at the first stage induce constraints on the second stage so that both stages can not be dissociated. One additional difficulty is the stochastic aspect due to uncertainties of several parameters (e.g. renewable energy-based generation) that requires more computational power to be handled. Surrogate models are introduced to deal with that additional computational burden. Experiments show that the EGO-based approach gives better results than GA with offline kriging model using smaller budget.Lire moins >
Lire la suite >This paper presents a comparison between two surrogate-assisted optimization methods dealing with two-stage stochastic programming. The Efficient Global Optimization (EGO) framework is challenging a method coupling Genetic Algorithm (GA) and offline-learnt kriging model for the lower stage optimization. The objective is to prove the good behavior of bayesian optimization (and in particular EGO) applied to a real-world two-stage problem with strong dependencies between the stages. The problem consists in determining the optimal strategy of an electricity market player participating in reserve (first stage) as well as day-ahead energy and real-time markets (second stage). The decisions optimized at the first stage induce constraints on the second stage so that both stages can not be dissociated. One additional difficulty is the stochastic aspect due to uncertainties of several parameters (e.g. renewable energy-based generation) that requires more computational power to be handled. Surrogate models are introduced to deal with that additional computational burden. Experiments show that the EGO-based approach gives better results than GA with offline kriging model using smaller budget.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02178314/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02178314/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02178314/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- PaCOS19.pdf
- Accès libre
- Accéder au document